KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Науки о космосе » Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна

Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Кип Торн, "Черные дыры и складки времени. Дерзкое наследие Эйнштейна" бесплатно, без регистрации.
Перейти на страницу:

* * *

Когда Чандрасекар прибыл в Кембридж, Фоулер был в отъезде. В сентябре, после возвращения Фоулера, Чандрасекар сразу же посетил его и вручил обе свои статьи. Фоулер одобрил первую и отослал ее для публикации в Philosophical Magazine, вторая же статья о максимальной массе белых карликов привела его в недоумение. Он не смог понять доказательства невозможности существования белых карликов с массой, большей 1,4 солнечной массы, полученное Чандрасекаром, но поскольку он был скорее физик, чем астроном, то попросил своего коллегу, известного астронома Е.А. Милна посмотреть статью. Когда и тот не смог понять приводимых в ней доказательств, Фоулер отказался рекомендовать статью в печать.

Чандрасекар был раздосадован. Прошло уже три месяца, как он приехал в Англию, и два месяца Фоулер держал его рукописи. Слишком долго, чтобы ждать одобрения для публикации. Уязвленный Чандрасекар прекратил все попытки опубликовать вторую статью в Британии и отослал по почте рукопись в Америку, в Astrophysical Magazine.

Несколько недель спустя пришел ответ редактора из Чикагского университета: рукопись послана на рецензию американскому физику Карлу Эккарту. В рукописи Чандрасекар приводил без объяснения результаты своих релятивистских и квантовомеханических расчетов, согласно которым сопротивление сжатию при высокой плотности среды составляет 4/3. Это сопротивление, равное 4/3, было существенно для установления предела массы белого карлика. Если бы сопротивление было больше, белые карлики могли бы быть сколь угодно тяжелыми, и Эккарт думал, что оно действительно больше. Чандрасекар немедленно дал ответ, содержащий математическое доказательство равенства сопротивления 4/3 (четырем третям). Эккарт, вникнув в детали, признал правоту Чандрасекара и одобрил рукопись для публикации. Наконец, спустя год после написания она была напечатана[63].

Реакцией астрономического сообщества было непроницаемое молчание. Казалось, никто не заинтересовался. Поэтому Чандрасекар, желая поскорее получить степень доктора философии, обратился к более насущным задачам.

Три года спустя, получив степень доктора, Чандрасекар посетил Россию, чтобы обменяться идеями с советскими учеными. В Ленинграде молодой армянский астроном Виктор Амазаспович Амбарцумян заявил Чандрасекару, что ни один астроном в мире не поверит в его странный предел массы до тех пор, пока на основании физических законов он не рассчитает массы достаточного числа белых карликов и ясно не покажет, что все они лежат ниже провозглашенного порога. При этом было бы явно недостаточно, утверждал Амбарцумян, чтобы Чандрасекар проанализировал только белые карлики с относительно низкой плотностью и сопротивлением, равным 5/3, и белые карлики с чрезвычайно высокой плотностью и сопротивлением 4/3. Ему следовало бы также исследовать несколько белых карликов с промежуточными значениями плотности и сопротивления и показать, что они также имеют массу, меньшую 1,4 солнечной. По возвращении в Кембридж Чандрасекар принял вызов Амбарцумяна.

В качестве основы для анализа белых карликов с промежуточными значениями плотности необходимо было иметь уравнение состояния их вещества при любых значениях плотности — от низкой до предельно большой. (Под термином «состояние» вещества физики понимают плотность и давление в веществе, или, что то же самое, его плотность и сопротивление сжатию, поскольку из плотности и сопротивления можно вычислить давление. Под «уравнением состояния» понимается соотношение между сопротивлением и плотностью, т. е. сопротивление «как функция» плотности.)

К концу 1934 г., когда Чандрасекар принял вызов Амбарцумяна, уравнение состояния для белых карликов, благодаря вычислениям Эдмунда Стоунера из университета Лидса в Англии и Вильгельма Андерсона из Тартусского университета в Эстонии, было уже известно. Уравнение состояния Стоунера — Андерсона показало, что когда вещество белого карлика сжимается все сильнее и сильнее, переходя от нерелятивистского режима низкой плотности и малых скоростей электронов в релятивистскую область чрезвычайно высоких плотностей и околосветовых скоростей движения электронов, сопротивление вещества сжатию плавно спадает от 5/3 до 4/3 (левая часть рис. 4.3). Трудно придумать более простое поведение.

Чтобы ответить на вызов Амбарцумяна, Чандрасекар должен был соединить уравнение состояния (зависимость сопротивления от плотности) с законами баланса между давлением и гравитацией и, исходя из этого, получить дифференциальное уравнение[64], описывающее внутреннюю структуру звезды, т. е. изменение плотности звезды в зависимости от расстояния до ее центра. Затем требовалось решить полученное дифференциальное уравнение для десятка или около того звезд, плотность вещества в центре которых меняется от низких до чрезвычайно высоких значений. Только решая дифференциальное уравнение для каждой отдельной звезды, он мог узнать ее массу и установить меньше ли она 1,4 солнечной.



4.3. Уравнение состояния вещества белых карликов, т. е. соотношение между плотностью вещества и сопротивлением сжатию (слева). По горизонтальной оси отложена плотность, до которой сжато вещество, по вертикальной — сопротивление (увеличение давления, в процентах, вызванное ростом плотности на 1 %). Вдоль кривой проставлены значения давления сжатия (равные внутреннему давлению) в единицах атмосферного давления. Диаметр (по горизонтали) и масса (по вертикали) звезд типа белых карликов, рассчитанные Чандрасекаром с помощью механического арифмометра «Брауншвайгер», принадлежавшего Эддингтону (справа)


Для звезд как с малой, так и с предельно большой плотностью, исследованных Чандрасекаром на борту парохода, решение соответствующего дифференциального уравнения и вытекающее из него строение звезды нашлось в книге Эддингтона. Однако для звезд с промежуточными значениями плотности вывести решение с помощью математических формул Чандрасекару никак не удавалось. Вычисления были слишком сложны. Ничего не оставалось, кроме как решить дифференциальные уравнения численно, с помощью счетной машины.

В 1934 г. счетные машины весьма отличались от тех компьютеров, которые появились в 90-е годы. Они напоминали, скорее, простейшие из карманных калькуляторов. За один раз они могли лишь перемножить два числа, причем пользователю требовалось сначала вручную ввести эти числа, а затем повернуть рукоятку. Рукоятка приводила в движение сложную систему шестеренок и колесиков, выполнявших умножение и выдававших ответ.

Но даже и такие калькуляторы были тогда роскошью, и получить к ним доступ было непросто. У Эддингтона, однако, был один — «Брауншвайгер», размер которого примерно соответствовал размеру настольных персональных компьютеров 90-х, и поэтому Чандрасекар, к тому времени уже хорошо знакомый с великим человеком, просто пришел к Эддингтону и попросил на время одолжить ему машину. В тот момент Эддингтон был вовлечен в спор о белых карликах с Милном и был весьма заинтересован поскорее узнать их детально рассчитанную внутреннюю структуру; поэтому он позволил Чандрасекару перенести «Брауншвайгер» в его комнату в Тринити-колледже,

Вычисления были длинными и утомительными. Каждый вечер после обеда Эддингтон, работавший в Тринити-колледже, поднимался к Чандрасекару, чтобы приободрить его и взглянуть, как продвигается дело.

Наконец, много дней спустя, Чандрасекар закончил. Он ответил на вызов Амбарцумяна. Для каждого из десяти типичных белых карликов он рассчитал внутреннюю структуру и затем, зная ее, — полную массу и поперечный размер звезды. Все массы, как и предполагалось, оказались меньше 1,4 солнечной. Более того, когда он нанес все значения масс и диаметров на диаграмму и соединил точки, получилась одна плавная кривая (правая часть рис. 4.3); измеренные массы и поперечники Сириуса В, а также других известных белых карликов относительно хорошо согласовывались с полученной кривой. (С учетом исправлений, полученных в результате современных астрономических наблюдений, согласие становится еще лучше; обратите внимание на новые значения 1990 г. массы и поперечника Сириуса В на рис. 4.3.) Гордый своими результатами, полагая, что астрономы всего мира, наконец, согласятся с его утверждением, что белые карлики не могут быть тяжелее, чем 1,4 массы Солнца, Чандрасекар был счастлив.

Особенно приятной казалась возможность представить полученные результаты на заседании Королевского астрономического общества в Лондоне. Выступление было назначено на пятницу 11 января. Согласно протоколу, детали повестки дня предстоящего заседания должны были оставаться в секрете вплоть до начала заседания, однако мисс Кей Вильямс, ученый секретарь Общества и близкий друг Чандрасекара, обычно тайно заранее посылала ему программу выступлений. Получив в четверг вечером программу по почте, Чандрасекар был удивлен, обнаружив, что сразу после его доклада следует выступление Эддингтона по вопросу о «релятивистском вырождении». Чандрасекар недоумевал. В течение последних нескольких месяцев Эддингтон заходил навестить его, по крайней мере, раз в неделю, читал черновики, но ни разу не упомянул о собственных исследованиях на ту же тему!

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*