Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Чтобы представить наглядно шварцшильдовскую кривизну, мы можем, подобно плоскатикам, мысленно перенести лист из искривленного трехмерного пространства нашей реальной Вселенной в воображаемое плоское гиперпространство (см. справа внизу на рис. 3.3). В этом не искривленном гиперпространстве лист может сохранить свою форму, лишь выгнувшись в том месте, где была звезда. Такие изображения двумерных поверхностей, взятые из нашей искривленной Вселенной и помещенные в гипотетическое плоское трехмерное пространство, и называются вложенными диаграммами.
Не следует поддаваться искушению отождествить третье измерение гиперпространства с третьим пространственным измерением нашей Вселенной. Третье измерение в гиперпространстве не имеет к измерениям нашего пространства никакого отношения. Это измерение, в которое мы не можем перейти и из которого не можем получить никакой информации; оно чисто вымышленное. Зато с его помощью мы сможем наглядно представить геометрию нашего искривленного пространства, пространства, где существуют черные дыры, гравитационные волны, сингулярности и червоточины (см. главы 6, 7, 10, 13 и 14).
Как показывает вложенная диаграмма на рис. 3.3, шварцшильдовская геометрия листа, взятого из экваториальной плоскости звезды, качественно такая же, как и у двумерного пространства и в нашем примере с плоскатиками: внутри звезды она искривлена и имеет чашеобразную форму, вдали от звезды она становится плоской. Так же как и большой круг в углублении двумерного пространства (рис. 3.2), окружность звезды, деленная на ее диаметр, здесь оказывается меньше, чем π. Для нашего Солнца отношение длины окружности к диаметру оказывается меньше π на несколько миллионных долей; другими словами, пространство внутри Солнца плоское с точностью до нескольких долей миллиона. Тем не менее, если Солнце, сохраняя свою массу, будет становиться все меньше и меньше, кривизна внутри будет становиться больше и больше, впадина на вложенной диаграмме (рис. 3.3) будет становиться все глубже и глубже, и отношение длины его окружности к диаметру может стать гораздо меньше π.
Поскольку пространство различно в различных системах отсчета («ваше пространство — это смесь моего пространства и моего времени, если мы движемся друг относительно друга»), особенности кривизны пространства у звезды будут отличаться при наблюдении из системы отсчета, которая движется с большой скоростью относительно звезды, и из системы, которая относительно ее покоится. В быстро движущейся системе отсчета звезда будет несколько сплющена в направлении, перпендикулярном направлению движения, а вложенная диаграмма будет похожа на рис. 3.3, с той разницей, что углубление будет сжато с боков и вытянуто. Это сплющивание в искривленном пространстве и есть сокращение размеров, которое Фицджеральд открыл во вселенной без гравитации (см. главу 1).
Шварцшильдовское решение уравнения поля Эйнштейна описывает не только кривизну пространства, но и искривление времени вблизи звезды, искривление, создаваемое ее гравитацией. В системе отсчета, которая покоится относительно звезды, это искривление в точности соответствует гравитационному замедлению времени, обсуждавшемуся в главе 2 (Врезка 2.4 и соответствующее обсуждение).
Вблизи поверхности звезды время течет медленнее, чем вдали от нее, и еще медленнее течет оно в ее центре.
В случае Солнца искривление времени очень мало: у поверхности замедление составляет примерно 2 миллионные доли (64 секунды в год) по сравнению с его течением вдали от Солнца, а в его центре эта величина достигает лишь одной стотысячной доли (5 минут в год). Однако если предположить, что при постоянной массе Солнце вдруг начнет сжиматься так, что его поверхность будет приближаться к центру, гравитация будет становиться сильнее, и замедление времени будет расти.
Одним из следствий этого искривления времени является гравитационное красное смещение света, излучаемого с поверхности звезды. Поскольку частота световых колебаний связана с течением времени в том месте, где они излучаются, на Земле свет, испущенный атомами у поверхности Солнца, будет иметь меньшую частоту, чем испускаемый такими же атомами межзвездного пространства. Смещение частоты в точности будет равно замедлению времени. Уменьшение частоты означает увеличение длины волны, поэтому спектр излучения звезды будет смещен в красную область на ту же величину, на которую замедляется время на поверхности звезды.
На поверхности Солнца замедление времени составляет 2 миллионные доли, соответственно, гравитационное красное смещение также должно быть равно 2 миллионные доли. Эта величина была слишком мала, чтобы этот эффект можно было обнаружить во времена Эйнштейна, однако в начале шестидесятых годов XX века технология достигла уровня эйнштейновских законов гравитации: Джим Браулт из Принстонского университета в ходе чрезвычайно точного эксперимента измерил величину красного смешения для солнечного света, и она оказалась в хорошем соответствии с предсказаниями Эйнштейна.
* * *
В течение нескольких лет после безвременной кончины Шварцшильда его пространственно-временная геометрия стала стандартным рабочим инструментом для физиков и астрофизиков. Множество людей, включая Эйнштейна, изучили ее и использовали для расчетов. Все они были совершенно согласны с тем, что вблизи и внутри достаточно больших звезд, таких, например, как Солнце, пространство-время оказывается слегка искривленным и спектр света, излучаемого с их поверхностей, будет, пусть немного, но смещен в красную область. Все также соглашались с тем, что чем более компактна звезда, тем сильнее создаваемое ею искривление пространства-времени и больше красное смещение излучаемого ею света.
3.4. Предсказания ОТО кривизны пространства и красноволнового смещения для трех чрезвычайно компактных звезд одинаковой массы, но с разными длинами окружности. У первой звезды окружность в четыре раза больше критической, у второй — в два раза больше, а у третьей — в точности равна. Говоря современным языком, поверхность третьей звезды является горизонтом черной дыры
Однако мало кто воспринимал всерьез радикальное предсказание, которое геометрия Шварцшильда давала для очень плотных звезд (см. рис. 3.4):
Шварцшильдовская геометрия предсказывает, что для каждой звезды существует критическая окружность, зависящая от массы — такая же как та, что была выведена Джоном Митчеллом и Пьером Симоном Лапласом более чем столетие назад: 18,5 километров умножить на массу этой звезды, выраженную в солнечных массах. Если окружность звезды больше критической в 4 раза (верхняя часть рис. 3.4), то ее пространство будет заметно искривлено, время на ее поверхности будет течь на 15 % медленнее, чем вдали от нее, а свет, испускаемый ею, будет смещаться в красную область спектра на 15 %. Если ее размер еще меньше, например, если он лишь вдвое превышает критическую величину (средняя часть рис. 3.4), искривление пространства будет еще сильнее и замедление времени на ее поверхности составит уже 41 %, соответственно, 41 % составит красное смещение излучаемого ею света. Все эти предсказания выглядят разумными и приемлемыми. Что казалось неприемлемым физикам и астрофизикам двадцатых и даже шестидесятых годов XX века, так это предсказания, касающиеся звезд, размер которых в точности равен критическому (нижняя часть рис. 3.4). Для такой звезды искривление пространства становится еще сильнее и замедление времени на ее поверхности становится бесконечным; время там вообще не течет — оно заморожено. Соответственно, какого бы цвета не был свет, испускаемый такой звездой, красное смещение сделает его частоту ниже красного, инфракрасного и радиоволнового диапазона — она станет бесконечно малой, т. е. свет перестанет существовать. На современном языке, поверхность звезды, размер которой равен критическому, находится в точности на горизонте событий, который звезда создает вокруг себя мощной гравитацией. Практический результат, к которому приводит шварцшильдовская геометрия, совпадает с выводами Митчелла и Лапласа: звезда, радиус которой равен или меньше критического, должна казаться удаленным наблюдателям совершенно черной; сейчас мы называем такие звезды черными дырами. Несмотря на это, механизмы здесь совершенно различны.
Митчелл и Лаплас с их ньютоновскими представлениями о том, что пространство и время абсолютны, а скорость света относительна, были уверены, что с поверхности звезды, диаметр которой чуть меньше критического, частицы могут подняться на очень большую высоту, возможно дальше орбиты, обращающейся вокруг звезды, планеты. Но в процессе подъема они будут тормозиться притяжением звезды и, в конце концов, едва не достигнув межзвездного пространства, начнут падать и упадут обратно. Таким образом, существа, живущие на планете, вращающейся вокруг такой звезды, будут видеть ее замедляющийся свет (для них она не будет черной), в то время как мы, живущие на далекой Земле, ее увидеть не сможем. Для нас такая звезда будет совершенно черной.