Кип Торн - Интерстеллар: наука за кадром
Использование подобных гравитационных пращей дает цивилизации возможность широко распространиться по межгалактическому пространству. Главная (и, возможно, непреодолимая) сложность при этом — поиск или создание подходящих двойных черных дыр. Найти двойную дыру для стартового разгона, быть может, получится без проблем (если цивилизация достаточно высокоразвитая), но двойная дыра для финишного торможения — совсем другое дело.
Что с вами будет, если не найдется подходящей двойной черной дыры для торможения или если вы пролетите мимо нее из-за недостаточно точной наводки? Дополнительные сложности обусловлены здесь расширением Вселенной[52]. Подумайте об этом.
Какими бы привлекательными ни казались все эти технологии будущего, слово «будущее» здесь ключевое. С технологиями XXI века мы неспособны достичь других звездных систем быстрее, чем за тысячи лет пути. Наша единственная, призрачная надежда на межзвездный перелет — это червоточина, как в «Интерстеллар», или еще какая-нибудь предельная форма искривления пространства — времени.
IV.
ЧЕРВОТОЧИНА
14. Червоточины
Откуда взялось название «червоточина»
Название астрофизическим червоточинам придумал мой научный руководитель Джон Уилер. Он использовал сравнение с червоточинами в яблоках (рис. 14.1). Для муравья, который ползает по яблоку, поверхность яблока — это целая вселенная. Если плод насквозь проеден червем, муравей может попасть с верхней части яблока на нижнюю двумя способами: проползти снаружи (через свою вселенную) или спустившись по червоточине. Путь через червоточину короче, это способ срезать дорогу, быстрее попав с одной стороны муравьиной вселенной на другую.
Аппетитная мякоть яблока, через которую проходит червоточина, не относится к муравьиной вселенной. Это трехмерный балк, или гиперпространство (см. главу 4). С одной стороны, стенки червоточины можно считать частью муравьиной вселенной — их поверхности имеют одну и ту же мерность (два измерения) и смыкаются со вселенной (с поверхностью яблока) на входе в червоточину. Но с другой — стенки червоточины не принадлежат муравьиной вселенной, это просто короткий путь через балк, по которому муравей может попасть из одной точки своей вселенной в другую.
Рис. 14.1. Муравей исследует яблоко с червоточинойЧервоточина Фламма
В 1916 году, всего через год после того, как Эйнштейн сформулировал законы общей теории относительности, Людвиг Фламм из Вены нашел решение уравнений Эйнштейна, которое описывает червоточину (хоть Фламм ее так и не называл). Сейчас мы знаем, что уравнения Эйнштейна допускают существование червоточин разной формы и разных свойств, но червоточина Фламма — единственная из них в точности сферическая и не содержащая гравитирующей материи[53]. Если мы сделаем экваториальный срез червоточины Фламма, так чтобы и она, и наша Вселенная (наша брана) имели два измерения вместо трех, а затем посмотрим на нашу Вселенную и на червоточину из балка, то они будут выглядеть как показано на левой части рис. 14.2.
Рис. 14.2. Червоточина ФламмаПоскольку одно из измерений нашей Вселенной на этом рисунке отсутствует, вам следует думать о себе как о двумерном существе, перемещения которого ограничены поверхностью изогнутого «листа» или двумерных стенок червоточины. Есть два способа попасть из пункта А нашей Вселенной в пункт В: короткий путь (синий пунктир) по стенке червоточины и длинный путь (красный пунктир) по поверхности «листа» нашей Вселенной.
Разумеется, пространство нашей Вселенной трехмерно, а не двумерно. И концентрические окружности на левой части рис. 14.2 — это на самом деле вложенные одна в другую зеленые сферы, показанные на правой части рисунка. Войдя в червоточину и двигаясь по идущему от точки А синему пунктиру, вы будете проходить через сферы всё меньшего и меньшего размера. Затем сферы, хоть они и вложены одна в другую, перестанут менять размер. А потом, по мере того как вы будете выбираться из червоточины, приближаясь к точке В, величина сфер начнет расти.
В течение девятнадцати лет физики почти не обращали внимания на экстравагантный вывод из уравнений Эйнштейна, предложенный Фламмом, — на его червоточину. Затем в 1935 году сам Эйнштейн и его коллега, физик Натан Розен, не зная о работах Фламма, самостоятельно пришли к тому же выводу, в подробностях исследовали его и принялись размышлять о его значимости для реального мира. Другие физики, также не зная о решении Фламма, стали называть его червоточину мостом Эйнштейна — Розена.
Схлопывание червоточины
Зачастую из уравнений эйнштейновской теории сложно понять, что, собственно, из них следует. Червоточина Фламма — хороший тому пример. С 1916 до 1962 года, почти полвека, физики считали, что червоточины статичны, никогда не меняются. Затем Джон Уилер и его студент Роберт Фуллер выяснили, что это не так. Пристально изучив уравнения, они обнаружили, что червоточины рождаются, расширяются и умирают, как показано на рис. 14.3.
Сначала (а) в нашей Вселенной есть две сингулярности. Со временем сингулярности сближаются через балк и, встретившись, образуют червоточину (b). Червоточина расширяется (с, d), а потом сжимается (е) до тех пор, пока не схлопнется, разделившись на две сингулярности (f). Рождение, расширение, сжатие и схлопывание происходят очень быстро, и ничто — даже свет — не успевает проникнуть по червоточине с одной стороны на другую.
Рис. 14.3. Динамика червоточины Фламма (моста Эйнштейна — Розена) (Рисунок Мэтта Зимета по моему наброску; из книги [Торн 2009].)Такой ход событий неизбежен. Если бы во Вселенной когда-либо, каким-либо образом возникла сферическая червоточина, не содержащая гравитирующей материи, она, согласно законам теории относительности, вела бы себя именно так.
Уилер не испугался этих выводов. Напротив, он был доволен, поскольку считал сингулярности (места, где пространство — время искажается бесконечно) «кризисом законов физики». А кризисы многому учат: внимательно их исследуя, можно узнать много ценного.
«Контакт»
Перенесемся на четверть века вперед. В мае 1985 года мне позвонил Карл Саган и попросил дать отзыв о его готовящемся к выходу в печать романе «Контакт»[54] в плане соблюдения законов теории относительности. Я с радостью согласился (мы с Карлом близкие друзья, само задание казалось интересным, и к тому же я чувствовал себя обязанным за то, что он познакомил меня с Линдой Обст).
Карл прислал мне рукопись, я прочитал ее, и мне очень понравилось. Но обнаружилась одна проблема: он отправил свою героиню, доктора Элинор Эрроуэй, из Солнечной системы к звезде Вега через черную дыру. Я знал, что недра черной дыры не могут стать дорогой к Веге, как и к любому другому пункту в нашей Вселенной. Проникнув за горизонт черной дыры, доктор Эрроуэй погибла бы — ее бы убила сингулярность. Чтобы быстро добраться до Веги, требовалась червоточина, а не черная дыра. Но это должна была быть червоточина, которая не схлопывается; проходимая червоточина.
Поэтому я спросил себя: что я должен сделать с червоточиной Фламма, чтобы она не схлопывалась, а оставалась открытой и через нее можно было пройти? Ответ подсказал мне несложный мысленный эксперимент. Положим, у нас есть червоточина — сферическая, как червоточина Фламма, но при этом не схлопывающаяся. Пошлем туда, в радиальном направлении, пучок света. Поскольку все лучи света в пучке направлены радиально, форма этого пучка будет такой, как на рис. 14.4. Он сходится (сужается в поперечнике) при входе в червоточину и расходится (расширяется в поперечнике) при выходе из нее. На выходе червоточина рассеивает лучи, словно линза.
Гравитирующие тела, вроде Солнца или черной дыры, сводят лучи (рис. 14.5). Они не могут разводить лучи, поскольку для этого тело должно обладать отрицательной массой (или отрицательной энергией; вспомните, что, по Эйнштейну, масса и энергия эквивалентны). Исходя из этого я сделал вывод, что любая проходимая сферическая червоточина должна быть пронизана неким веществом, которое обладает отрицательной энергией. Как минимум энергия этого вещества должна быть отрицательной относительно пучка света или чего угодно еще, что путешествует сквозь червоточину с околосветовой скоростью[55]. Я называю такое вещество «экзотической материей». (Позже я выяснил, что, согласно законам теории относительности, экзотической материей должна быть пронизана любая червоточина, сферическая или нет. Это следует из теоремы, которую в 1975 году доказал Дэннис Гэннон из Калифорнийского университета в Дэвисе и о которой я, увы, не знал.)