KnigaRead.com/

Тулио Редже - Этюды о Вселенной

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Тулио Редже, "Этюды о Вселенной" бесплатно, без регистрации.
Перейти на страницу:

За несколько секунд центральное ядро коллапсирует в сильно сжатое состояние (нейтронную звезду, или пульсар), в котором плотность может достигать значений, в десятки триллионов раз превышающих плотность воды. Ложка, сделанная из такого сверхплотного материала, содержала бы столько же вещества, сколько его в целой горе. Вся масса Солнца занимала бы объем, сравнимый с размерами города. в зависимости от размеров и структуры звезды процесс сжатия либо прекратится на стадии нейтронной звезды, либо пойдет дальше – до стадии черной дыры.

При образовании пульсара энергия сжатия будет передаваться внешней оболочке, фактически еще не начавшей падать в направлении к центру (к этому времени пройдет всего лишь несколько секунд). Эта оболочка нагреется до температуры в миллиарды градусов и будет отброшена прочь большим давлением излучения (а также потоком нейтрино) со скоростью в тысячи километров в секунду. Внешний наблюдатель увидел бы почти мгновенное превращение звезды в огненный шар, стремительно расширяющийся и уничтожающий все на своем пути.

Когда яркость ее достигает максимума, светимость звезды может превысить первоначальную в миллиарды раз. Крабовидная туманность как раз состоит из остатков такой взорвавшейся звезды, которые продолжают распространяться в пространстве и занимают в настоящее время область диаметром в несколько световых лет.

Пульсары

В центре этой туманности все еще можно различить звездочку, которая считается пульсаром, оставшимся после взрыва. Вблизи она выглядела бы как почти идеальный шар, состоящий из сверхплотного вещества (нейтронной жидкости) и вращающийся вокруг своей оси с очень высокой скоростью (свыше 30 оборотов в секунду). Имеется запретное на самой звезде сильнейшее магнитное поле (в триллионы раз больше магнитного поля Земли), которое увлекается вращением пульсара. Это поле, взаимодействуя с плазмой, окружающей звезду, передает ей энергию вращения, что приводит к внушительным эффектам. Вся система ведет себя практически как вращающаяся фара, излучающая свет со всеми длинами волн, от радиоволн до рентгеновских лучей. Наблюдателю на Земле кажется, что пульсар излучает очень короткие вспышки света, разделенные одной тридцатой секунды (период обращения), отчего произошло само название «пульсар». Впервые пульсар наблюдал Хьюиш в 1967 г.

Локальные эффекты, связанные со сверхновыми

Возможно ли, что Солнце вдруг решит эффектно прекратить свое существование, вспыхнув сверхновой и навсегда вычеркнув нас из Вселенной? Речь идет об очень маловероятном событии, хотя и возможном. Действительно, для синтеза железа и обеспечения больших гравитационных сил, необходимых для коллапса, требуется звезда большой массы. Если бы близко расположенная звезда, например Сириус, взорвалась как сверхновая, мы наверняка почувствовали бы какие-то последствия, скорее всего отрицательные. Взрыв привел бы к тому, что в окружающее пространство было выброшено большое количество космических лучей; при этом наблюдались бы интенсивные радиопомехи. Кроме того, сверхновая сделала бы наши ночи светлыми, как день, что вызвало бы на Земле экологические нарушения.

Спектакль получился бы увлекательным, но не лишенным опасностей. в пределах Галактики в среднем одна сверхновая взрывается раз в триста лет. Астрономы всегда начеку в надежде увидеть объекты такого типа в начальной, самой интересной, стадии. Но можно без особого труда обнаружить сверхновые в соседних галактиках; речь идет о событии не столь уж редком. в этом случае сверхновые можно использовать также и для грубой оценки расстояния до галактики, в которой они находятся.

Наконец, существуют указания на то, что часть вещества, из которого состоит Солнечная система, осталась от взрыва сверхновой в далеком прошлом. Уже говорилось, что внешняя оболочка звезды, будучи отброшена прочь с очень высокой скоростью, ведет себя как «космическая метла», сметая все остатки вещества (межзвездные пыль и газ), встречающиеся на ее пути. Временами это вещество сжимается настолько, что наступает гравитационная неустойчивость, и оно конденсируется в новые звезды. Похоже, что наше Солнце родилось именно таким образом. Итак, мы участвуем в непрерывном циклическом процессе взаимного превращения звезд и межзвездного вещества, постоянно обогащающегося и меняющегося под влиянием взрывов сверхновых.

Только тому, кто наблюдает небо поверхностно, с помощью несовершенных приборов, Вселенная может показаться местом тихим и спокойным. на самом деле мы должны быть благодарны судьбе за то, что живем рядом со скромной третьестепенной звездой, спокойным солнышком без претензий, находящимся на периферии, но зато надежным на ближайшие пять миллиардов лет. а там посмотрим.

4. Юпитер и Сатурн

«Вояджер» выполнил задание и теперь удаляется от системы Сатурна; примерно через десять лет он, возможно, пошлет нам первые снимки Урана, снятые с близкого расстояния. Астрономам есть чем заняться во время долгого ожидания этих изображений. Космический зонд уже сделал тысячи превосходных фотографий Сатурна в добавление к изображениям Юпитера.

Что же узнали мы о Солнечной системе с помощью этой и многих других автоматических станций? Практически вся планетология была перестроена на основе огромного количества нового материала, по сравнению с которым информация, полученная раньше с помощью телескопов, имеет в основном историческую ценность.

Состав Юпитера

Начнем с Юпитера, колосса Солнечной системы. Галилей первым увидел диск и четыре главных спутника, проведя знаменитую серию наблюдений, открывающих эпоху современной астрономии. Спустя три столетия «Вояджер» подвел нас к самой планете и дал возможность разглядеть детали ее поверхности. Диаметр Юпитера составляет около 144000 км, что примерно в 12 раз больше диаметра Земли, а его масса всего лишь в 300 раз превышает земную; если бы Юпитер имел такую же плотность, как и Земля, то, учитывая их размеры, его масса должна была бы превышать земную больше чем в 1500 раз. в действительности Юпитер состоит из более легкого вещества: из смеси водорода, гелия и некоторых примесей, включающих метан, аммиак, сернистые и другие химические соединения. Сила тяготения на поверхности Юпитера примерно в два с половиной раза больше, чем на Земле: мальчик, весящий 40 кг, на Юпитере весил бы целый центнер. По этой причине вес верхних слоев сжимает оболочку Юпитера, постепенно доводя вещество до очень большой плотности по мере перехода в глубь планеты. Юпитер почти весь состоит из вещества с газо-жидкой структурой, и только в самом центре, возможно, имеется небольшое каменистое ядро, скрытое под громадной оболочкой. Само это ядро окутано водородом, который, будучи сжат до невообразимой плотности, превращается в твердое металлическое вещество, проводящее электричество и тепло.

Несостоявшаяся звезда

Юпитер образовался при сжатии той же газовой туманности, из которой образовалось Солнце, и по своему химическому составу он тоже схож с Солнцем. При этом масса Юпитера едва достигает одной тысячной массы Солнца, что очень много по земным масштабам, но недостаточно, чтобы зажечь термоядерные реакции, которые вырабатывают тепло в недрах Солнца. Так что здесь мы имеем дело с «несостоявшейся звездой». в этом смысле Солнечная система включает в себя двойную звезду (или даже тройную, если считать Сатурн). Процесс сжатия Юпитера еще не закончен, и тепло, вырабатываемое этим непрерывным гравитационным сжатием вещества Юпитера, излучается атмосферой планеты в инфракрасной области спектра, невидимое для человеческого глаза, но вполне заметное для астрономических приборов.

Воспринимаемый в инфракрасном свете, Юпитер светится сам и излучает в три раза больше энергии, чем получает от Солнца.

Конвективные движения

Температура планеты увеличивается по мере продвижения внутрь, достигая нескольких десятков тысяч градусов в самом центре. Такие высокие температуры вызывают конвективные движения в оболочке планеты, движения, напоминающие то, что мы видим в кастрюле, поставленной на огонь: глубинные массы жидкости горячее и легче и поэтому перемещаются к поверхности. Достигнув ее, они излучают тепло во внешнее пространство, охлаждаются и опускаются вниз; цикл начинается снова.

В телескоп видно, что поверхность Юпитера разделена на горизонтальные полосы (параллельные экватору). Темные полосы чередуются со светлыми. Считается, что в пределах светлых полос горячее вещество выходит на поверхность, в то время как на темных полосах охлажденное вещество начинает свой спуск вниз. Данные, полученные «Вояджером», показали, что эта теория при всех ее достоинствах должна быть усовершенствована с учетом поразительных структур, усложняющих и украшающих атмосферу Юпитера гирляндами, вихрями и громадными омутами всевозможных расцветок. Еще Кассини видел на поверхности планеты знаменитое Красное Пятно, названное так, как говорит Азимов, из-за яркого красновато-оранжевого цвета. с близкого расстояния видно, что это красное пятно не единственное и что имеется еще одно, намного меньшее. Разумеется, большое пятно остается самым знаменитым: все-таки оно было обнаружено лет триста назад. Рядом с этими пятнами расположено множество других разноцветных пятен, имеющих, по-видимому, разные физические и химические составы.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*