KnigaRead.com/

Юрий Мизун - Полярные сияния

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Юрий Мизун, "Полярные сияния" бесплатно, без регистрации.
Перейти на страницу:

4. Заряженная частица движется в магнитном поле и на нее одновременно действует также электрическое поле. В этом случае электрическое поле добавляет частице скорость поперек магнитного поля и одновременно поперек электрического (рис. 13). Величина этой скорости зависит прямо пропорционально от величины последнего и обратно пропорционально от величины первого. Направление дрейфового движения не зависит от знака электрического заряда. Картина движения в этом случае выглядит так: электроны и протоны вращаются по спиралям вокруг магнитных силовых линий в обратных направлениях с разными радиусами и угловыми частотами. Одновременно и те и другие (под действием электрического поля) дрейфуют в одном и том же направлении с одной и той же дрейфовой скоростью (которая не зависит ни от заряда, ни от массы и скорости частицы) поперек как магнитного, так и электрического поля, которые, в свою очередь, перпендикулярны друг другу. Такую картину мы наблюдаем в хвосте магнитосферы, где на магнитное поле Земли наложено крупномасштабное электрическое поле, направленное с утренней стороны на вечернюю.

Рис. 12. Движение заряженной частицы по спирали вокруг силовых линий магнитного поля


Рис. 13. Движение заряженных частиц в скрещенных полях по циклоидам

Электрическое поле направлено снизу вверх


Рис. 14. Траектория заряженной частицы, двигающейся в сторону возрастающего магнитного поля Н


Рис. 15. Силы, действующие на частицу в магнитном поле со сходящимися силовыми линиями:

F1 — поддерживает ларморовское вращение; F2 — выталкивает частицу в сторону ослабевающего поля


5. Заряженная частица движется в неоднородном магнитном поле. Другими словами, магнитное поле имеет градиент, т. е. изменяется от одной точки пространства к другой.

Если частица движется по спирали вокруг силовой линии магнитного поля, которое по мере продвижения частицы увеличивается (т, е. силовые линии сходятся), то по мере увеличения магнитного поля она замедляет свое поступательное движение вдоль силовой линии (рис. 14) и при определенном поле отразится и будет продолжать двигаться в обратном направлении, т. е. в сторону уменьшения магнитного поля (рис. 15). В магнитосфере силовые линии магнитного поля сходятся по мере их приближения к поверхности Земли в высоких широтах. Поэтому электроны и протоны, вращаясь вокруг таких силовых линий по спиралям и подходя к местам сгущения силовых линий, отражаются и направляются в другое полушарие (рис. 16). Там они так же отражаются и движутся обратно в прежнее полушарие. Так происходит до тех пор, пока по какой-либо причине они не попадут в область плотной атмосферы, где в соударениях с нейтральными частицами потеряют свою энергию. Такая критическая ситуация может создаться во время геомагнитной бури, когда нарушается структура силовых линий.

Рис. 16. Движение заряженной частицы в магнитном поле Земли (в меридиональной плоскости)

А и Б — точки отражения или зеркальные точки

Рис. 17. Дрейф заряженных частиц, двигающихся в неоднородном магнитном поле в плоскости, перпендикулярной к H


Кроме описанного явления, в неоднородном магнитном поле заряженная частица приобретает дрейфовую скорость, перпендикулярную магнитной силовой линии и одновременно направлению наибольшего изменения магнитного поля, т. е. градиента поля (рис. 17). В случае магнитного поля Земли электроны начнут дрейфовать на восток, а протоны — на запад, поскольку градиент магнитного поля направлен по радиусу. В отличие от дрейфа за счет действия электрического поля, когда электроны и протоны дрейфуют вместе, т. е. в одном направлении и с одинаковой по величине скоростью, дрейф электронов и протонов за счет градиента геомагнитного поля создает электрический ток; направление их дрейфа противоположно. Именно этому дрейфу обязан своим происхождением кольцевой ток, текущий в магнитосфере вокруг Земли и изменяющий свою интенсивность в зависимости от поступления заряженных частиц.

Рис. 18. Схематическое изображение траектории заряженной частицы в магнитном поле Земли


Рис. 19. Дрейф частиц в поле тяжести, перпендикулярном к магнитному полю Н


Магнитное поле Земли неоднородно не только в радиальном направлении, его силовые линии изогнуты — они выходят из южного полушария и входят в северное, удаляясь на самое большое расстояние от Земли в экваториальной плоскости. Этот факт также отразится на движении заряженных частиц. В результате электроны и протоны будут дрейфовать в противоположных направлениях (восток—запад). Это движение также приводит к образованию электрического тока (рис. 18).

Полученные выше результаты можно приложить к любой действующей на частоту силе. В частности, такой может быть сила земного притяжения, под действием которой заряженные частицы дополнительно приобретают скорость дрейфа, направленную поперек этой силы и одновременно поперек силовым линиям магнитного поля (рис. 19). Это движение также порождает электрический ток, поскольку электроны и протоны (положительные ионы) дрейфуют в противоположных направлениях.

Подведем итог возможных ситуаций в околоземном космическом пространстве. Заряженные частицы вращаются вдоль магнитных силовых линий и одновременно смещаются вдоль силовой линии, т. е. движутся по спиралям. Попадая в области более интенсивного магнитного поля, они отражаются и, продолжая двигаться по спирали, дрейфуют в противоположное полушарие. Затем, отразившись и там, снова возвращаются и т. д. За счет неоднородности геомагнитного поля одновременно с описанным движением, частицы постепенно дрейфуют от одной силовой линии к другой в направлении восток—запад. Этот азимутальный дрейф создает электрический ток, окружающий Землю.

Законы движения заряженных частиц в геомагнитном поле состоят в сохранении трех физических величин: магнитного момента частицы, интеграла действия вдоль силовой линии и магнитного потока через оболочку. Движение заряженных частиц по окружности (вокруг силовой линии магнитного поля) эквивалентно круговому току. Магнитное поле этого кругового тока может быть представлено как поле точечного диполя с магнитным моментом μ:

Магнитный момент определяется отношением «поперечной» кинетической энергии частицы к величине магнитного поля. Можно показать, что величина магнитного момента при движении заряженной частицы в магнитном поле остается постоянной. Другими словами, магнитный момент является адиабатическим инвариантом.

Второй, продольный инвариант I равен интегралу (сумме) действия (т. е. mVs) вдоль силовой линии между точками отражения.

Сохранение μ и I позволяет объяснить образование пояса захваченных вокруг Земли заряженных частиц. Положим, что нам известна величина магнитного поля в данной точке на экваторе, равная B0, угол между направлением движения частицы и этим полем в данной точке (питч-угол) α0 и значение I для данной частицы. Рассмотрим, где может оказаться эта частица при последующем движении.

Первый инвариант дает нам, что частица всегда будет отражаться на поверхности В = Вm, которая определяется из условия (sin2α)/B = 1/Bm. Однако это еще не означает, что частица всегда будет оставаться на силовой линии, для которой значение поля на экваторе равно В0. Первый инвариант не накладывает в этом отношении никаких ограничений, и в частности не препятствует тому, чтобы частица вследствие дрейфа изменила долготу и отразилась на экваторе, т. е. при Вт = В0.

Второй инвариант полагает дополнительное требование на движение частицы. Она не только должна иметь точки отражения на поверхности В = Вm, но и интеграл вдоль силовой линии должен оставаться величиной постоянной. На заданной долготе это условие определяет одну единственную силовую линию, вдоль которой частица должна совершать колебания по широте. Закон сохранения второго адиабатического инварианта позволяет установить, вокруг какой силовой линии будет происходить движение частицы при ее азимутальном дрейфе.

Третьим инвариантом движения частицы является инвариант потока. Он связан с долготным азимутальным дрейфом и наиболее легко нарушается. Этот инвариант равен полному потоку вектора магнитного поля В через поверхность, ограниченную поверхностью дрейфа частицы по долготе, т. е. поверхностью одинаковых величин второго инварианта.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*