KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Jaume Navarro - Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.

Jaume Navarro - Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Jaume Navarro, "Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт." бесплатно, без регистрации.
Перейти на страницу:

Любой школьник знаком с законом Ньютона о всемирном тяготении и законом Кулона об электрической силе, и вот между ними была проведена аналогия. Точно так же, как существует концепция массы, от которой зависит сила тяготения, существует и другая концепция — электрические заряды, положительные или отрицательные, которые взаимно притягиваются или отталкиваются. Однако разговор об электрических зарядах требует абстрагирования, поскольку на самом деле существуют не сами заряды, а электрически заряженные тела. Это важно для понимания формулировки Томсона и других английских физиков XIX века.

Модель, с помощью которой Томсон визуализировал электрический разряд, подобна модели, используемой при электролизе. Ученый представлял себе, что с электрическим разрядом происходит диссоциация молекул газа и последующая их реассоциация. Как в популярных танцах с постоянной сменой партнеров, энергия, рассеянная в электрическом разряде, вызвана этим постоянным обменом атомов между молекулами. В 1883 году Томсон разработал теорию материи, согласно которой атомы — всего лишь вихри эфира, то есть зоны, где эфир движется, образуя спирали. Так, ассоциация и диссоциация атомов — это различные динамические сочетания этих вихрей, и электрические явления вызваны натяжениями, которые такие движения производят в эфире.

Это видение мира, в котором атомы и электрический заряд предстали как проявления одной базовой сущности — эфира, — позволяло рассматривать химию и электромагнетизм комплексно. Однако теория не имела успеха, и Томсону пришлось заменить ее другой, более простой, но менее универсальной, в которой электрический заряд — это свойство атомов молекул в их взаимоотношении с эфиром. Таким был первый шаг к «атомизации» электрического заряда, столь важный для последующих работ ученого.

Когда Томсон понял, как сложно установить теорию, которая объяснила бы взаимодействие между электричеством, материей и эфиром, он сосредоточился на изучении катодных лучей. Катодные лучи — это свет, который появляется, если задать разницу потенциалов в вакуумных трубках. Отсутствие материи позволяло предположить, что понять механизмы электрической проводимости эфира станет легче. Было известно, что катодные лучи отклоняются по магнитным полям, но с электрическими полями того же не наблюдалось. Отсюда противоречие между корпускулярными и волновыми объяснениями. Первые заключались в том, что катодные лучи — это результат прохождения электрически заряженных молекул между анодом и катодом (полюсами трубки). Такое объяснение противоречило предположению, что в электрических полях нет отклонения. Поэтому некоторые исследователи утверждали, что катодные лучи — это волна, передаваемая в эфире и не сопровождаемая материей.

Томсон заметил, что катодные лучи все-таки отклоняются из-за электрического поля, что делало более вероятной их идентификацию как электрически заряженных молекул. Британскому ученому, работавшему над моделью электролиза, показалось логичным, что катодные лучи — это результат испускания заряженных молекул анодом и катодом. Однако, к собственному удивлению, в 1897 году он установил: частное между зарядом и массой этих молекул таково, что масса должна быть в тысячу раз меньше массы самого маленького известного атома, атома водорода. Кроме того, новая молекула не зависела от типа материала, из которого сделаны катоды, в связи с чем Томсон пришел к выводу: маленькая молекула, ответственная за катодные лучи, является компонентом всех атомов. Эту частицу он назвал «корпускулой».

Сегодня корпускулы мы называем электронами и рассматриваем их как одни из элементарных частиц материи. Однако в конце XIX века предположение, что атомы состоят из равных между собой корпускул, плохо восприняли как химики, так и физики. Томсона упрекнули в приверженности алхимии и в том, что он воскрешает старую мечту о трансмутации элементов. Атомы Дальтона различались между собой, они были неизменны и неделимы, что гарантировало некую стабильность Вселенной. Если атомы состоят из субатомных частиц, то единственное различие между атомами — это число и организация таких частиц, что приближает к возможности замены одних атомов другими, например к превращению ртути в золото, как того хотели средневековые алхимики. Как раз поэтому физики и химики не сразу приняли корпускулу.


НИЛЬС БОР, ДОКТОР ФИЗИКИ

Несмотря на изначальное нежелание принять электроны как субатомные частицы и компоненты всех атомов, сомнений в том, что они обладают огромным потенциалом для объяснения многих электрических явлений, не возникало. В итоге электроны получили определенный авторитет среди физиков не как компоненты атома, а только как средство объяснения электрической проводимости. Поэтому нет ничего удивительного в том, что молодой и амбициозный ученый Нильс Бор посвятил докторскую диссертацию одной из модных тогда тем — роли электронов в электрической проводимости металлических материалов.

Написание диссертации не было обычным делом для студентов университетов в начале XX века. В среднем докторскую степень по естественным и математическим наукам получали всего три-четыре студента в год.

Братья Бор были среди этих избранных, и, что любопытно, Харальд стал доктором на несколько месяцев раньше, чем его старший брат Нильс. Данное событие было отражено в датских газетах: писали, что звезда футбола стала звездой математики.


ЭЛЕКТРОН ТОМСОНА

Как Джозеф Джон Томсон нашел электроны? Конечно же, не с помощью очень мощного микроскопа и не потому, что тогда не существовало такого инструмента — такая визуализация невозможна в принципе. На самом деле современная наука представляет электроны не как маленькие бильярдные шарики с определенными пределами, а как уплотнения, зависящие от волны. Так что слово «частица» в обозначении элементарных частиц ошибочно. Томсон работал с трубками, наполненными газами, которые он подвергал электрическим разрядам, и в 1896 году решил сосредоточиться на типе разряда, который производится в вакууме, — на катодных лучах. Принцип этого явления тот же, что и в старых телевизорах: в стеклянной вакуумной трубке между двумя ее полюсами производится электрический разряд. Томсон заметил, что эти лучи отклоняются как электрическими, так и магнитными полями. Объяснение было только одно: лучи состоят из «корпускул», то есть из маленьких частиц с массой и электрическим зарядом (альтернативное объяснение, что катодные лучи представляют собой волны, несовместимо с этими отклонениями). Расчеты, произведенные Томсоном, предполагали, что носители катодных лучей — отрицательно заряженные частицы, масса которых намного меньше самого маленького атома, известного на тот момент — атома водорода. На рисунке представлена стеклянная трубка, используемая Томсоном: катодные лучи испускаются из точки С, проходят через точки А и В и отклоняются из-за электрического поля между пластинами D и Е. Шкала в конце трубки, на которую попадают катодные лучи, служит для измерения отклонения в зависимости от интенсивности электрического поля. Нечто подобное возможно и с магнитным полем.



Совершенно очевидно, что когда речь идет об атомах, следует использовать тот же язык, что и в поэзии. Поэт заботится не столько об описании фактов, сколько о создании образов и установлении мысленных связей.

Нильс Бор, 1920 год


Это отставание отчасти было связано с методом работы Бора. Для него ничто никогда не было абсолютно законченным. Он всегда находил способ улучшить результат, заменить какой-то термин или выражение, чтобы смысл его слов и уравнений был максимально точным. Свою диссертацию он переписал 14 раз. Даже после защиты в мае 1911 года в переплет собственного экземпляра диссертации он пожелал поместить чистые страницы после каждой напечатанной. Естественно, не для того чтобы визуально увеличить свой труд, а чтобы оставить пространство для дальнейших изменений в этой работе, уже утвержденной комиссией. Бор всю жизнь был перфекционистом, к ужасу издателей и соавторов, он нередко вносил правки в свои научные статьи, отданные в печать.

Тот же подход он применял и в отношении статей других исследователей. Временами он поступал как ребенок, с удовольствием отмечающий оплошность в речи взрослых. Так, работая над диссертацией, он обнаружил некоторые ошибки в статьях Томсона, Планка и других великих ученых эпохи.

В своей докторской диссертации он попытался найти ответы для некоторых выводов из самой распространенной на тот момент теории проводимости электричества в металлах — теории Пауля Друде (1863-1906). Центральная идея состояла в рассмотрении твердых металлических тел в качестве совокупности статичных положительных ионов, где все эффекты проводимости были вызваны электронами, которые вели себя как облако, окружающее положительную структуру. Следует подчеркнуть, что эта модель не включала в себя никакого представления о строении атомов, а лишь предполагала, что электрическая проводимость обязана более или менее свободному движению электронного облака в металле. Исследование привело Бора к недавним работам Томсона, Эйнштейна и Планка, и так он познакомился с проблемами классической физики и с решениями, которые предлагала зарождающаяся квантовая гипотеза.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*