KnigaRead.com/

Феликс Зигель - Астрономы наблюдают

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Феликс Зигель, "Астрономы наблюдают" бесплатно, без регистрации.
Перейти на страницу:

«Месяцев десять тому назад стало известно, что некий фламандец построил перспективу, при помощи которой видимые предметы, далеко расположенные от глаз, становятся отчетливо различимы, как будто они находятся вблизи. Это и было причиной, по которой я обратился к изысканию оснований и средств для изобретения сходного инструмента. Вскоре после этого, опираясь на учение о преломлении, я постиг суть дела и сначала изготовил свинцовую трубу, на концах которой я поместил два оптических стекла, оба плоских с одной стороны, с другой стороны одно стекло выпукло-сферическое, другое вогнутое».

Этот первенец телескопической техники давал увеличение всего в три раза. Позже Галилею удалось построить более совершенный инструмент, увеличивающий в 30 раз. И тогда, как пишет Галилей, «оставив дела земные, я обратился к небесным».

7 января 1610 года навсегда останется памятной датой в истории человечества. Вечером этого дня Галилей впервые направил построенный им телескоп[3]) на небо. Он увидел то, что предвидеть заранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, сходным хотя бы по рельефу с Землей. Планета Юпитер предстала перед глазами изумленного Галилея крошечным диском, вокруг которого обращались четыре необычные звездочки — его спутники. Картина эта в миниатюре напоминала Солнечную систему по представлениям Коперника. При наблюдениях в телескоп планета Венера оказалась похожей на маленькую Луну. Она меняла свои фазы, что свидетельствовало о ее обращении вокруг Солнца. На самом Солнце (закрыв глаза темным стеклом) Галилей увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю Солнца, из чего Галилей сделал правильный вывод о вращении Солнца вокруг оси.

В темные прозрачные ночи в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженному глазу. Некоторые туманные пятна на ночном небе оказались скопищами слабо светящихся звезд. Великим собранием скученно расположенных звездочек оказался и Млечный Путь — беловатая, слабо светящаяся полоса, опоясывающая все небо.

Несовершенство первого телескопа помешало Галилею рассмотреть кольцо Сатурна.

Рис. 11. Телескопы Галилея.

Вместо кольца он увидел по обе стороны Сатурна два каких-то странных придатка и в своем «Звездном вестнике» — дневнике наблюдений — Галилеи был вынужден записать, что «высочайшую планету» (то есть Сатурн) он «тройною наблюдал».

Открытия Галилея положили начало телескопической астрономии. Но его телескопы (рис. 11), утвердившие, окончательно новое коперниканское мировоззрение, были очень несовершенны. Уже при жизни Галилея им на смену пришли телескопы несколько иного типа. Изобретателем нового инструмента был уже знакомый нам Иоганн Кеплер. В 1611 году в трактате «Диоптрика» Кеплер дал описание телескопа, состоящего из двух двояковыпуклых линз. Сам Кеплер, будучи типичным астрономом-теоретиком, ограничился лишь описанием схемы нового телескопа, а первым, кто построил такой телескоп и употребил его для астрономических целей, был иезуит Шейнер, оппонент Галилея в их горячих спорах о природе солнечных пятен.

Рассмотрим оптические схемы и принцип действия галилеевского и кеплеровского телескопов[4]. Линза А, обращенная к объекту наблюдения, называется объективом, а та линза В, к которой прикладывает свой глаз наблюдатель — окуляром. Если линза толще посередине, чем на краях, она называется собирательной или положительной, в противном случае — рассеивающей или отрицательной. Заметим, что в телескопе самого Галилея объективом служила плоско-выпуклая линза, а окуляром — плоско-вогнутая. По существу, галилеевский телескоп был прообразом современного театрального бинокля, в котором используются двояковыпуклые и двояковогнутые линзы. В телескопе Кеплера и объектив и окуляр были положительными двояковыпуклыми линзами.

Рис. 12. Галилеевский (вверху) и кемеровский телескопы (схема)

Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямая, соединяющая центры этих поверхностей, называется оптической осью линзы. Если на такую линзу падают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой фокусом линзы. Расстояние от центра линзы до ее фокуса называют фокусным расстоянием. Нетрудно сообразить, что чем больше кривизна поверхностей собирательной линзы, тем меньше ее фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Иначе ведут себя рассеивающие, отрицательные линзы. Падающий на них параллельно оптической оси пучок света они рассеивают и в фокусе такой линзы сходятся не сами лучи, а их продолжения. Потому рассеивающие линзы имеют, как говорят, мнимый фокус и дают мнимое изображение.

На рис. 12 показан ход лучей в галилеевском телескопе. Так как небесные светила, практически говоря, находятся «в бесконечности», то изображения их получаются в фокальной плоскости, то есть в плоскости, проходящей через фокус F и перпендикулярной к оптической оси. Между фокусом и объективом Галилей поместил рассеивающую линзу, которая давала мнимое, прямое и увеличенное изображение MN.

Главным недостатком галилеевского телескопа было очень малое поле зрения — так называют угловой поперечник кружка неба, видимого в телескоп. Из-за этого наводить телескоп на небесное светило и наблюдать его Галилею было очень трудно. По той же причине галилеевские телескопы после смерти их изобретателя в астрономии не употреблялись и их реликтом можно считать современные театральные бинокли.

В кеплеровском телескопе (см. рис. 12) изображение CD получается действительное, увеличенное и перевернутое. Последнее обстоятельство, неудобное при наблюдениях земных предметов, в астрономии несущественно — ведь в космосе нет какого-то абсолютного верха или низа, а потому небесные тела не могут быть повернутыми телескопом «вверх ногами».

Первое из двух главных преимуществ телескопа — это увеличение угла зрения, под которым мы видим небесные объекты. Как уже говорилось, человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние между ними не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает лишь крупные детали, поперечник которых превышает 100 км. В благоприятных условиях, когда Солнце затянуто облачной дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженный глаз на небесных телах не видит. Телескопы же увеличивают угол зрения в десятки и сотни раз.

Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не больше 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше того количества, которое собирает глаз, во сколько площадь объектива больше площади зрачка. Иначе говоря, это отношение равно отношению квадратов диаметров объектива и зрачка.

Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком[5]. В сущности, выходной зрачок — это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа (то есть увеличение угла зрения по сравнению с невооруженным глазом) равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, увеличивая фокусное расстояние объектива и уменьшая фокусное расстояние окуляра, можно достичь любых увеличений. Теоретически это так, но практически все выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зрения. Во-вторых, с ростом увеличения становятся все заметнее движения воздуха. Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тусклее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, Солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и в десятки тысяч раз). Приходится искать некоторый оптимум и потому даже в современных телескопах, как правило, наибольшие увеличения не превосходят нескольких сотен раз.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*