Jose Santonja - Физика учит новый язык. Лейбниц. Анализ бесконечно малых.
Затворничество в Майнце мешало ему непосредственно общаться с известными людьми, осуществлявшими научную революцию. Лейбниц всегда утверждал, что если бы ему удалось посетить Париж раньше, его знания обогатились бы, и он смог бы гораздо продуктивнее заниматься наукой.
За год до этого Лейбниц переписывался с Пьером де Каркави (1600-1684), королевским библиотекарем, и рассказывал ему об арифметической машине, над которой работал. Ученый узнал, что Каркави хлопочет о том, чтобы его пригласили в Парижскую академию наук. Сам Каркави написал Лейбницу письмо с просьбой прислать образец его машины, чтобы показать ее Жану-Батисту Кольберу (1619-1683), министру Людовика XIV. Так налаживалась связь Лейбница с научным сообществом, благодаря которой миру был явлен его гений.
НАУЧНЫЙ ОБМЕН
В современном мире мы видим множество примеров того, как люди профессионально занимаются исследованиями и получают за это денежную компенсацию. Они могут работать в университетах, в лабораториях, в больших больницах или на предприятиях, например в сфере программирования или телефонии, но объединяет их всех то, что они живут за счет своих исследований. Однако так было не всегда. В XVI и XVII веках многие великие люди, совершавшие научную революцию, были вынуждены заниматься еще какой-либо деятельностью, чтобы прокормить себя. Большинство авторов открытий того времени были теологами, дипломатами, юристами, священниками, архитекторами и так далее. Например, Пьер де Ферма (1601-1665) был адвокатом и членом Палаты эдиктов, Джон Уоллис (1616— 1703) — криптографом, Антони ван Левенгук (1632-1723), который с помощью микроскопа первый открыл одноклеточные организмы, занимался торговлей, а философ Барух Спиноза (1632-1677) работал шлифовщиком линз. В те времена не существовало профессиональных ученых, кроме некоторых малочисленных счастливчиков, служивших при дворе короля или какого-либо вельможи.
Кроме того, большинство ученых были самоучками. В целом вузы сильно отставали от развития наук, поэтому, за редким исключением, более полное образование нужно было получать вне университета. Джон Уоллис, например, вспоминал:
«Математика в то время редко рассматривалась как академическая дисциплина — скорее как нечто механическое».
То есть математика считалась более уделом торговцев, а не ученых. Таким образом, желающий углубить свои знания должен был обратиться к какому-нибудь известному ученому и стать его последователем.
Другим аспектом, затруднявшим развитие науки, была изоляция ученых. Сегодня, благодаря современным средствам общения, новость о любом событии, произошедшем в стране, немедленно распространяется по всему миру. Но в XVI веке дела, конечно, обстояли иначе: новое открытие могло стать достоянием научной общественности только через несколько месяцев или лет.
В начале XVII века не существовало каналов, которые позволяли бы ученым осуществлять быстрый и эффективный обмен идеями. Осознавая это, интеллектуалы начали объединяться, чтобы обмениваться опытом, а также результатами экспериментов на собраниях или посредством писем, которые зачитывались на таких собраниях. Одним из самых известных координаторов научной жизни Европы в то время был теолог Марен Мерсенн, монах ордена минимов. Он был однокурсником Декарта и написал несколько книг по философии и теории музыки, а в мире математики его имя известно благодаря так называемым простым числам Мерсенна.
Этот человек считал, что ученые должны работать в сообществе, советуясь друг с другом и сравнивая свои эксперименты и открытия. Представьте себе: в ту эпоху знания ремесленных гильдий передавались, иногда в большом секрете, только ученикам, которые входили в эти гильдии.
ПРОСТЫЕ ЧИСЛА МЕРСЕННА
Числами Мерсенна обычно называют числа вида Mn=2n — 1, где п — натуральное число (например, 3, 7,15, 31, 63,127...). Те из них, которые являются простыми, известны как простые числа Мерсенна (из предыдущих это: 3, 7,31 и 127). Марен Мерсенн (1588-1648) представил данные числа, которые позже были названы в его честь, в работе Cogitata physico-mathematica («Физико-математические рассуждения»), опубликованной в 1641 году. В ней он изложил несколько свойств этих чисел, которые смогли доказать только три века спустя. Также в ней был ряд простых чисел Мерсенна (до показателя степени п = 257), как выяснилось позже, содержащий несколько ошибок.
Марен Мерсенн.
Простые числа сегодня
Электронная эра позволила начиная с середины XX века вычислять новые простые числа все большего размера: сегодня они используются в коммуникациях. В последние 60 лет наибольшее известное простое число почти всегда было числом Мерсенна. Сегодня известно всего 47 простых чисел Мерсенна, и наибольшее из них равно 257885161-1: оно состоит из более чем 17 млн цифр! Неизвестно, сколько простых чисел Мерсенна может существовать, хотя предполагается, что их бесконечно много.
Мерсенн же пребывал в убеждении, что знания должны быть в свободном доступе. Он создал сообщество, известное как кружок Мерсенна, которое собиралось прямо в его монашеской келье. К нему принадлежали, среди прочих, Декарт, Паскаль, Роберваль, Дезарг, Ферма и Гассенди. Хотя группа была создана как Академия Мерсенна, затем она соединилась с другим подобным сообществом, организованным братьями Пьером и Жаком Дюпюи, королевскими библиотекарями. Группа Дюпюи включала в себя не только математиков, таких как Гюйгенс, но и представителей других наук. Союз из двух групп стал называться Academia Parisiensis: это было то самое зерно, из которого позже вырастет Парижская академия наук.
Еще одно подобное сообщество образовалось, хотя и позднее, вокруг философа и теолога Николя Мальбранша (1638— 1715). Он также преподавал математику и был членом Конфедерации ораторианцев святого Филиппа Нери. В своей организации он проводил собрания, как у Мерсенна, для обмена информацией о математических открытиях. В данный кружок входили Пьер Вариньон, маркиз Лопиталь и Иоганн Бернулли. Мальбранш сделал очень много для распространения идей Декарта и Лейбница, кроме того, он способствовал изданию книги Лопиталя — первой опубликованной работы на тему нового на тот момент анализа бесконечно малых.
В Англии Фрэнсис Бэкон (1561-1626), который был в большей степени философом, чем ученым, отстаивал необходимость развития экспериментальной науки, в то время презираемой и воспринимаемой как чистое ремесленничество. Также Бэкон доказывал необходимость обмена идеями и результатами экспериментов. Благодаря его влиянию вокруг Теодора Хаака (1605-1690), немецкого дьякона, жившего в Англии, сложилась группа ученых. Она сначала была известна как Группа 1645 и собиралась в Кембридже, а затем переехала в Лондон, где из нее со временем выросло Королевское общество.
Публикации Мальбранша представляли большой интерес. В то время было сложно издавать научные книги, особенно по математике: у них обычно был ограниченный тираж, и прибыли они не приносили. Немецкий астроном Иоганн Кеплер (1571-1630) полагал, что книги по математике довольно сложно понять, и в этом заключена причина их непопулярности:
«Очень тяжелая судьба сегодня у автора математических и особенно астрономических книг [...], и поэтому очень мало хороших читателей. Я сам, хотя и считаюсь математиком, должен прилагать усилия, чтобы читать свои работы».
Распространению научных идей мешало и то, что некоторые авторы не желали публиковать результаты своих работ. Например, Пьер де Ферма так и не написал ни одной книги о своих достижениях. Часто отказ публиковаться был связан с нежеланием вступать в полемику с другими учеными, как это некогда произошло с Исааком Ньютоном после столкновения с Робертом Гуком (1635-1703) по поводу природы света. Также было обычным делом не издавать итоги своей работы в виде книги, а рассказывать о них в письмах друзьям и знакомым. Часто такие открытия получали известность только после смерти автора. Некоторые ученые отказывались публиковать результаты своих исследований, если последние не были полностью закончены. Подобное произошло с Христианом Гюйгенсом (1629-1695), которому, кроме огромной изобретательности, было присуще эстетическое чувство математики: он публиковал только те работы, которые считал идеальными. Следовательно, не было ничего странного в том, что другие опередили его с похожими результатами, а затем возникли споры о том, кто был первым в открытии того или иного явления. Похожий спор шел и по поводу авторства дифференциального исчисления между Ньютоном и Лейбницем.
Обычной практикой для ученых, которых не связывали дружеские отношения, было посылать друг другу свои работы через третьих лиц. Одним из таких посредников между учеными, особенно из разных стран, как раз и выступал Мерсенн. А Генри Ольденбург (1618-1677) был в подобном же деле соединительным звеном между Ньютоном и Лейбницем. Напоследок заметим, что такой обмен был хорошим способом обсудить собственное открытие и выслушать критику от других ученых до того, как оно будет представлено публично.