Питер Медавар - Наука о живом
Несколько слов о микроскопах. Хотя микроскоп открыл целый мир мельчайших организмов, не следует преувеличивать важности обычной оптической микроскопии и вообще возможности смотреть на предметы, вместо того чтобы изучать их другими способами. Как мы узнаем ниже, открытие хромосом и генов зависело от возможности видеть их не более, чем открытие атомов и молекул; существование генов было известно задолго до того, как были обнаружены видимые особенности хромосом, которые можно было бы ассоциировать с генами. Обычный оптический микроскоп имеет тот недостаток, что с его помощью нельзя увидеть предмет, размеры которого меньше длины волны видимого света. Используя излучение с более короткой длиной волны, например ультрафиолетовое, и специальные пропускающие его линзы, мы можем увидеть более мелкие объекты; однако действительный переворот в микроскопии произошел с созданием электронного микроскопа, который {27} с помощью магнитных полей фокусирует и направляет обладающие большой проникающей способностью пучки электронов точно так же, как видимый свет направляется, рассеивается или собирается в одну течку с помощью линз. Но и у электронной микроскопии есть свои минусы: главный из них заключается в том, что исследуемый материал должен быть абсолютно высушенным и находиться в полном вакууме, а срезы исследуемых тканей приходится делать настолько тонкими, что их изготовление требует исключительного мастерства. И тем не менее, несмотря на эти неудобства, электронная микроскопия раскрыла перед нами новый мир кристаллических систем внутри живой клетки. Для целей микроанатомии самый мощный электронный микроскоп с самой высокой разрешающей способностью* не обязательно окажется самым лучшим. Электронного микроскопа со средней разрешающей способностью вполне достаточно для самой детальной микроанатомии (ее не следует путать с молекулярной анатомией), тогда как микроскоп с очень большим увеличением может в этих случаях ничего не дать: так, наблюдатель гораздо больше узнает о форме и снаряжении приближающегося корабля, глядя в обычный бинокль, чем употребив подзорную трубу такой мощности, что в нее будут видны щетинки на подбородке капитана. За последние годы при умелом использовании электронного микроскопа неожиданно легко удалось увидеть крупнейшие биологические молекулы, такие, как молекулы антител, а с использованием микроскопа высокой разрешающей способности была почти полностью изучена структура одного из вирусов — аденовируса 12.
Глава 2 Биогенез и эволюция
Среди принципов биологии наиболее безоговорочно установлен, и вряд ли когда-нибудь подвергнется пересмотру, принцип биогенеза — утверждение, что все живое происходит от живого. За каждым живым организмом наших дней лежит длинная цепь предков, тянущаяся непрерывно до самого начала биологического времени. В своей отрицательной форме этот принцип означает, что не существует никакого самопроизвольного зарождения, например самозарождения бактерий из разлагающихся органических веществ или простейших из сенного настоя. Как известно, Луи Пастер, величайший из биологов-экспериментаторов, провел ряд блестящих опытов, которые опровергли теорию самопроизвольного зарождения бактерий и легли в основу другой, гораздо более привлекательной гипотезы, утверждавшей, что бактерии, столь бурно размножающиеся, например, в теплом мясном бульоне, происходят от организмов, попадающих туда из воздуха. Это открытие, медицинское значение которого сразу понял английский хирург Джозеф Листер, лежит в основе всех антисептических и асептических методов современной хирургии.
Принцип биогенеза приложим не только к организму в целом, но и к некоторым из составляющих его частей. Так, клеточные органоиды, которые называются митохондриями, не возникают заново благодаря какому-то протекающему в клетке синтезу, но всегда происходят от ранее существовавших митохондрий. Биогенез не подразумевает эволюции, но эволюционные связи, естественно, подразумевают биогенез. В обычное понятие биогенеза нередко вкладывается еще дополняющее его понятие гомогенеза — т. е. идеи, что подобное порождается подобным. {29} В широком смысле слова такое уточнение оправданно, хотя теория эволюции и вынуждает, нас вносить в него некоторые частные поправки. Так, потомком мыши будет мышь, а потомком человека — человек. Никаких причудливых гетерогенезов никогда не случается — вопреки всевозможным экстравагантным представлениям, бытовавшим в те дни, когда эмпирическая точность еще не считалась необходимым или хотя бы желательным качеством претендующего на достоверность изложения фактов; самым знаменитым было поверье, будто утки могут рождаться из таких симпатичных представителей класса ракообразных, как морские уточки (Lepas anatifera). Подобные представления относятся к области «поэтизма» — способа мышления, который вызывает у ученых такое же негодование, какое наиболее нелепые сумасбродства компьютеризованной литературной критики вызывают у любителей литературы.
Эволюция и систематика. Сэмюэл Тейлор Колридж заявил однажды, что зоологии грозит опасность полностью развалиться под тяжестью накопленной ею огромной массы неупорядоченных фактов. Однако эволюционная гипотеза* внесла порядок и связность в ту гигантскую хаотичную груду информации, которой представлялась Колриджу современная ему зоология. Эту гипотезу можно рассматривать как поправку к принципу биогенеза, гласящему, что подобное порождается подобным. Она утверждает, что все существующее разнообразие форм жизни возникло в результате прогрессирующего расхождения в процессе биогенеза. Хотя в целом верно, что потомком мыши будет мышь, а потомком человека — человек, время от времени возникают отклонения, которые задним числом можно рассматривать как источник новых видовых форм. Именно возникновению этих отклонений и поддерживавшим их процессам мы обязаны всем разнообразием форм, которые сейчас существуют на Земле. Школьные «доказательства» {30} происходившей в прошлом эволюции относятся к тому же сорту, что и «доказательства» шарообразности Земли, которые мы учили в первых классах школы. Однако принятие эволюционной гипотезы зависит не от этих так называемых доказательств. Наоборот, эволюционная гипотеза пропитывает всю биологическую науку, лежит в ее основе и придает ей осмысленность точно так же, как идея шарообразности Земли пронизывает всю геодезию, науку о кораблевождении и изучение времени. Эволюционная гипотеза неотъемлемо входит в основу основ способа мышления в биологии. Только эволюционная гипотеза придает смысл несомненной взаимосвязи организмов, явлениям наследственности и путям развития. Биолог может мыслить только эволюционно — другой альтернативы для него не существует. Механизмы эволюции мы рассмотрим ниже.
Назначение биологической систематики заключается в том, чтобы давать живым организмам названия и располагать эти названия в таком порядке или по такой системе, которые покажутся правильными даже биологу с сугубо таксономическими склонностями. Все живые организмы разделяются прежде всего на царства — растений и животных — и затем уже менее монархически на типы*. Члены одного типа объединяются по признаку сходства общего плана строения независимо от различия в деталях. Хороший пример этого представляет собой тип членистоногих (Arthropoda), включающий ракообразных и насекомых, которые сходны между собой в том отношении, что обладают сегментированным телом, «наружным скелетом» и расчлененными придатками. Еще одним фундаментальным сходством между ними является строение нервной системы, которая тянется по середине брюшной стороны тела и в каждом сегменте образует ганглии (нервные узлы) с нервами, отходящими к придаткам. Кроме того, их система кровообращения принадлежит к так называемому незамкнутому типу, поскольку кровь, лишь очень слабо снабжающая ткани кислородом, не течет по анатомически {31} выделенным каналам, таким, как артерии и вены, а скорее просачивается сквозь ткани, прежде чем вернуться к сердцу, которое расположено ближе к спине, — в отличие от сердца позвоночных, расположенного на брюшной стороне тела.
Беспозвоночные*, с одной стороны, представлены такими типами, как членистоногие, черви, правильно так называемые (Annelides — кольчатые черви, включающие дождевого червя, чье полезное трудолюбие и скромность могли бы послужить хорошим примером для всех нас), и черви, называемые так неправильно, т. е. круглые (Nematodes) и плоские черви, многие из которых являются паразитами. С другой стороны, некоторые группы беспозвоночных в противоположность членистоногим родственны хордовым**, включающим позвоночных, в том числе нас с вами, — некоторыми чертами очень раннего развития и наличием большой, нередко разделенной на три части внутренней полости, так называемого целома, который лежит между соединительной тканью внешней стенки тела и соединительной тканью, окружающей и поддерживающей внутренние органы. Группы, которые принадлежат по происхождению к хордовым и среди которых, каким невероятным это ни кажется, мы должны искать современных представителей наших далеких предков, — это иглокожие, в частности морские ежи, морские звезды и морские огурцы, а также форониды, щетинкочелюстные*** и большая группа асцидий, чья близость к хордовым для профессиональных зоологов настолько очевидна, что они всегда классифицируют их как хордовых. Таким образом, среди всех беспозвоночных можно выделить два основных потока эволюции и две большие родственные группы: одну, основу которой составляют кольчатые черви и членистоногие, и другую, тяготеющую к хордовым и позвоночным. {32}