KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Ник Лейн - Лестница жизни. Десять величайших изобретений эволюции

Ник Лейн - Лестница жизни. Десять величайших изобретений эволюции

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ник Лейн, "Лестница жизни. Десять величайших изобретений эволюции" бесплатно, без регистрации.
Перейти на страницу:

Первое состоит в том, что общий предок всех эукариот уже занимался сексом. Этот вывод можно сделать на основании того, что если искать общие свойства всех растений, животных, водорослей, грибов и протистов, то одним из ключевых таких свойств окажется секс. Тот факт, что секс составляет одну из базовых особенностей эукариот, говорит о многом. Если половой процесс был у нашего общего предка со всеми остальными эукариотами, предками которого, в свою очередь, были бесполые бактерии, значит, где-то должно было возникнуть “бутылочное горлышко”, сквозь которое могли пройти только эукариоты, занимающиеся сексом. Первые эукариоты предположительно были бесполыми, как и бактерии, от которых они произошли (ни у кого из бактерий нет настоящего полового процесса), но все такие эукариоты впоследствии вымерли.

Второе суждение касается митохондрий - этих “электростанций” эукариотических клеток. Нет никаких сомнений в том, что предки митохондрий были свободноживущими бактериями, и представляется почти столь же несомненным, что последний общий предок всех современных эукариот уже обладал митохондриями. Нет сомнений и в том, что сотни, если не тысячи, генов были перенесены из митохондрий в геном клетки-хозяина и что “прыгающие” гены, которых полно в геномах почти всех эукариот, происходят именно из митохондрий. Ни одно из этих наблюдений не вызывает особых споров, но все вместе они рисуют поразительную картину факторов отбора, которые могли привести к возникновению такого явления, как секс8.

Представьте себе первую эукариотическую клетку - химеру, получившуюся в результате вселения крошечных бактерий внутрь более крупной клетки-хозяина. Всякий раз, когда одна из попавших внутрь бактерий умирает, ее гены оказываются на свободе и дождем сыплются на хромосому клетки-хозяина. Отдельные фрагменты этих генов в случайном порядке встраиваются в хромосому хозяина с помощью обычного для бактерий способа встраивания генов. Одни из этих генов полезные, другие - бесполезные, некоторые соответствуют уже имеющимся. Но некоторые встраиваются прямо в середину собственных генов клетки-хозяина, разделяя их на кусочки. “Прыгающие” гены производят страшные разрушения. Клетка-хозяин никак не может остановить их размножение, и они безнаказанно скачут по всему геному, залезая в хозяйские гены и разрезая хозяйскую кольцевую хромосому на несколько линейных хромосом вроде тех, что имеются теперь у всех эукариот (см. главу 4).

Такие клетки образуют очень изменчивую популяцию, которая быстро эволюционирует. Одни простые мутации приводят к утрате клеточной стенки, другие способствуют совершенствованию бактериального клеточного скелета и его постепенному превращению в более динамичный эукариотический клеточный скелет. В клетках-хозяевах образуются внутренние мембраны и ядро - возможно, за счет беспорядочной передачи генов синтеза липидов из клеток-гостей. Эти достижения не требуют прыжков в неизвестность в надежде на лучшую долю: все перечисленные новшества могут возникать поэтапно, за счет простой передачи генов и незначительных мутаций. Но почти все перемены - это перемены к худшему. На каждое полезное изменение приходятся тысячи вредных. Единственный способ сделать хромосомы, которые не будут нести смерть, единственный способ совмещать удачные открытия и лучшие гены в одной клетке - это секс. Настоящий секс, а не скромный и неуверенный обмен генами, как у бактерий. Только секс позволяет совместить ядерную мембрану одной клетки с динамичным клеточным скелетом другой и механизмом мечения белков третьей, параллельно уничтожая неудачные комбинации. Мейоз, комбинируя гены в случайном порядке, может давать одного победителя на тысячу проигравших (или, лучше сказать, одного выжившего на тысячу погибших), но все же он во много раз лучше, чем клонирование. В изменчивой популяции с высокой частотой мутаций, существующей в условиях сильного давления отбора (частично вызываемого шквальным огнем паразитических “прыгающих” генов), клоны были обречены. Неудивительно, что мы все занимаемся сексом. Без секса мы, эукариоты, давно бы погибли.

Но возникает вопрос: если клоны были обречены, могли секс возникнуть достаточно быстро, чтобы спасти положение? Ответ, как ни странно, - да. Чисто технически секс мог возникнуть очень просто. По сути, половой процесс предполагает всего три вещи: слияние клеток, распределение хромосом по наборам и рекомбинацию. Давайте вкратце рассмотрим их.

Слияние клеток у бактерий более или менее исключено: ему мешает клеточная стенка. Но стоит ее утратить, и вполне может возникнуть обратная проблема: как избежать слияния. Среди простых эукариот, таких как слизевики и грибы, распространено слияние в гигантские клетки с множеством ядер - синцитии. Рыхлые сети таких клеток регулярно возникают на одном из этапов жизненного цикла примитивных эукариот. Паразитам, таким как “прыгающие” гены, как, впрочем, и митохондриям, такое слияние идет на пользу, ведь оно обеспечивает им доступ к новым хозяевам. Было показано, что некоторые “прыгающие” гены сами стимулируют слияние клеток. Учитывая все это, намного более сложной задачей первых эукариот могло стать не обеспечение слияния клеток, а наоборот, его предотвращение. Так что первое необходимое условие секса - слияние клеток - почти наверняка не было проблемой.

Распределение хромосом по наборам на первый взгляд кажется делом куда более трудным. Вспомним, что при мейозе происходит замысловатый “танец” хромосом, который начинается с их неожиданного удвоения, а заканчивается распределением их одинарных наборов по четырем дочерним клеткам. Почему все так сложно? На самом деле не так уж и сложно: это не более чем модификация уже имеющегося способа деления клеток - митоза, который тоже начинается с удвоения хромосом. Митоз, по-видимому, развился из нормального механизма деления бактериальных клеток за счет нескольких довольно простых изменений, последовательность которых попытался восстановить Том Кавалир-Смит. Он также отметил, что для превращения митоза в примитивную разновидность мейоза требовалось только одно ключевое изменение - не завершающееся переваривание белкового “клея” (его научное название - когезин), который связывает получившиеся в результате удвоения хромосомы друг с другом. Вместо того чтобы начать новый клеточный цикл, удваивая свои хромосомы, клетка делает паузу, а после возвращается к распределению хромосом по дочерним клеткам. Оставшийся “клей”, по сути, убеждает клетку, что она уже готова к следующему раунду распределения хромосом, хотя на самом деле она так и не завершила первый раунд.

Итогом оказывается сокращение числа хромосом, которое, как утверждает Кавалир-Смит, поначалу и было главной функцией мейоза. Если первым эукариотическим клеткам было трудно избегать слияния в сети, содержащие множество хромосом (что по-прежнему происходит у слизевиков), то для восстановления простых клеток с одинарным набором хромосом требовалась та или иная форма редукционного деления. Мейоз, возникший в результате неполадок в уже существующем на тот момент митозе, позволил восстанавливать отдельные клетки с помощью механизма, мало чем отличающегося от обычного клеточного деления.

Здесь самое время перейти к третьему необходимому компоненту полового процесса - рекомбинации. Но и его возникновение не было большой проблемой, потому что вся необходимая для этого аппаратура уже имелась у бактерий и была просто унаследована от них эукариотами. Не только аппаратура, но и точный механизм рекомбинации у бактерий и эукариот один и тот же. Бактерии постоянно поглощают гены из окружающей среды (в ходе так называемого горизонтального переноса генов) и встраивают их путем рекомбинации в собственные хромосомы. У первых эукариот та же самая аппаратура, должно быть, осуществляла встраивание в геном клетки-хозяина бактериальных генов, дождем сыпавшихся из митохондрий, что привело к устойчивому росту размеров эукариотического генома. Тибор Веллаи из Университета им. Лоранда Этвеша в Будапеште полагает, что функцией рекомбинации у первых эукариот было, по-видимому, именно встраивание генов в хромосомы. Но задача заставить аппаратуру для рекомбинации выполнять в ходе мейоза менее специальную функцию сводилась, надо полагать, к простой формальности.

Так что возникновение секса в ходе эволюции было, по-видимому, не таким уж сложным делом. По чисто техническим причинам он должен был возникнуть почти неизбежно. Намного более сложный для биологов парадокс состоит в том, что, возникнув, секс впоследствии сохранился. Суть естественного отбора не в “выживании наиболее приспособленных”, потому что выживание ничего не стоит, если приспособленному организму не удается оставить потомство. У клонирования есть огромное преимущество перед сексом, и все же секс занял главенствующее положение почти у всех многоклеточных эукариот. Преимущества, которые обеспечивал секс прежде, по-видимому, ничем не отличаются от тех, которые он обеспечивает и теперь: способность собирать наилучшие сочетания генов водном организме, очищать геном от вредных мутаций и включать в него все ценные новшества. В те времена секс, вероятно, давал лишь одного победителя или даже одного жалкого выжившего на тысячу проигравших и погибших, но все равно это было гораздо лучше, чем клонирование, которое означало верную гибель. И даже сегодня, хотя секс дает вдвое больше потомков, в итоге он обеспечивает потомству более чем вдвое лучшую приспособленность.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*