Ричард Манкевич - История математики. От счетных палочек до бессчетных вселенных
Здесь история разветвляется на множество переплетающихся путей. Последователи Буля применили математику к логике, создав алгебраическую логику; итальянский математик Джузеппе Пеано (1858–1932), а позднее английский математик и философ Бертран Рассел (1872–1970) стремились вывести математику из логики — эту затею можно определить как логицизм. Другие ученые, тревожась из-за появления новых математических структур, начали искать твердый фундамент математики — то, на чем сможет надежно стоять все здание этой науки. О практических результатах этого поиска можно узнать из главы 23.
Если человек не знает, как рассуждать логично, — а я должен отметить, что большинство довольно хороших, да и выдающихся математиков подпадают под эту категорию, — но просто пользуется счетом на пальцах, слепо делая выводы по аналогии с другими выводами, которые оказались правильными, он, конечно, будет постоянно делать ошибки в отношении нон-финитных чисел. Истина заключается в том, что такие люди вообще не рассуждают. Однако для того меньшинства, что способно рассуждать, рассуждение о нон-финитных числах оказывается проще, чем рассуждение о числах финитных, поскольку [в первом случае] не требуется сложный силлогизм транспонируемого количества. Например, то, что целое больше своих частей, не является аксиомой, в отличие от мнения Евклида, в высшей степени плохого логика. Это теорема, легко доказуемая с помощью силлогизма транспонируемого количества, но не иначе. Она верна в отношении конечных множеств, но ошибочна в отношении бесконечных. Так, четные числа являются частью целых чисел. Тем не менее четных чисел не меньше, чем всех целых чисел; это несложная теорема, поскольку если любое число в целом ряде целых чисел удвоится, результатом будет ряд четных чисел:
1,2, 3, 4, 5, 6 и т. д.
2, 4, 6, 8,10,12 и т. д.
Так что для каждого числа существует отдельное четное число. На самом деле существует столько же отдельных удвоенных чисел, сколько существует вообще отдельных чисел. Но все удвоенные числа являются четными…
Чарльз Сандерс Пирс[22]. Закон разума (1892)[23]18. Поля деятельности
С середины восемнадцатого века события в дифференциальном и интегральном исчислениях шли рука об руку с развитием математического анализа физических явлений, особенно движения. Исследуемые темы включали термодинамику, астрономическую механику, гидродинамику, оптику, электричество и магнетизм. Ученые составляли дифференциальные уравнения, описывая эти явления, а затем разрабатывали методы, необходимые для их решения. Единственное точное решение было трудно найти, а потому математики сосредоточились на методах приблизительного решения. Хотя упомянутые выше явления физически выглядели совершенно по-разному, все они в некотором смысле были связаны со средой. Со времени появления ньютоновских «Начал» бушевали споры относительно реальности «действия на расстоянии»: как, например, тяготение может действовать на большом расстоянии? Что такое тяготение и магнетизм — разные проявления одной и той же силы или совершенно различные явления? Возможно ли, что пространство заполнено некоей средой, известной как эфир? Если да, то что такое эфир и каковы его свойства? Чтобы проиллюстрировать все эти вопросы, я сосредоточусь на истории теории потенциала и ее связи с электромагнетизмом.
Дифференциальное и интегральное исчисления Лейбница усложнились и теперь позволяли работать более чем с одной независимой переменной, так что можно было исследовать функцию z=t (х,у) так же, как кривую y=ƒ(x) на плоскости. Это стало возможно благодаря появлению частичных дифференциальных уравнений, в которых каждую переменную можно было дифференцировать независимо от остальных. Взаимодействия движущихся частиц могли быть представлены дифференциальными уравнениями. Первоначальные решения Ньютона, описывавшие эллиптические орбиты планет, были получены только благодаря применению достаточно грубых упрощений, в частности утверждений, что Солнце и планеты имеют точечные массы и что каждую планету можно рассматривать независимо от всех остальных. Теперь, когда неприятие гелиоцентрической модели и эллиптических орбит было преодолено, можно было начать работу по созданию более точной и сложной модели. Одним из приемов было рассмотрение изменения энергии внутри динамической системы — речь идет о теории потенциалов, представляющей собой математический способ выразить физическую идею сохранения энергии.
Главные проблемы в области небесной механики возникли после того, как было обнаружено, что планеты не движутся по идеальным эллиптическим орбитам, а скорее покачиваются, двигаясь из стороны в сторону. По мере получения более точных данных становилось все очевиднее, что объекты Солнечной системы отклоняются от идеального пути, и это привело к развитию теории возмущений. Теперь путь планеты рассматривали как результат ее взаимодействия не только с Солнцем, но со всеми остальными планетами. Это сделало математический анализ движения планет невероятно трудным делом, так как теперь приходилось учитывать очень много переменных. Очень подробно рассматривалась задача трех тел: даже для упрощенной системы, состоящей только из Солнца, Земли и Луны, все равно невозможно было получить точное решение. Но затем, в 1747 году, Эйлер разработал новую технику, посредством которой можно было приблизительно вычислить расстояния между планетами в любой момент времени, используя раскрытие тригонометрических рядов.
Леонард Эйлер (1707–1783) — самый плодовитый математик в истории. В Базельском университете ему помогал Иоганн Бернулли. (Семейство Бернулли в течение нескольких поколений давало миру выдающихся математиков, это действительно настоящая научная династия.) В 1727 году Эйлер начал работать в Санкт-Петербургской академии наук, которую незадолго до этого открыла Екатерина Великая. В 1733 году Даниил Бернулли, сын Иоганна, возвратился домой в Базель, оставив кафедру математики в Санкт-Петербурге молодому Эйлеру. Год спустя Эйлер женился. У него родилось тринадцать детей, однако восемь умерли в младенчестве. Позднее он писал, что самые значительные свои открытия сделал, держа ребенка на руках или играя с детьми. У него были серьезные проблемы со зрением — в 1740 году он написал, что один глаз у него не видит, а в 1771 году ученый полностью ослеп. В 1741 году Эйлер принял приглашение Фридриха Великого переехать в Берлин и несколько лет спустя вошел в состав правления недавно основанной Берлинской академии наук. В 1766 году Эйлер возвратился в Санкт-Петербург и, несмотря на слепоту, получил там больше половины своих результатов. В работе ему помогали преданные ассистенты и его феноменальная память.
Математические исследования Эйлера охватывали практически все области математики. Он делал практические работы по картографии, судостроению, составлял календари, занимался финансовыми вычислениями. Но более всего он известен своими работами по математическому анализу и аналитической механике. Особенно известны такие поистине революционные работы, как «Введение в анализ бесконечно малых» (1748), «Теория движения твердых тел» (1765) и главный труд, посвященный дифференциальному и интегральному исчислениям. Эйлер создал язык функций, запись ƒ(х), а также внедрил множество общепринятых теперь математических символов, вроде π для обозначения отношения окружности к ее диаметру, е — для базы натуральных логарифмов, i — для обозначения √-1 и знак ∑, для суммы. Он считал, что теория чисел, геометрия и математический анализ должны поддерживать друг друга в процессе моделирования явлений природы.
Теория возмущений позволила получить более точные результаты при вычислении орбит планет, но также привела к тревожному заключению, что планеты вовсе не должны оставаться на тех орбитах, по которым они движутся в настоящий момент. Небольшие колебания легко могут увеличиться, и планета сойдет со своей орбиты — казалось, придется допустить существование ангелов, не позволяющих планетам сойти со своих орбит. (В XX веке выяснилось, что динамику Солнечной системы можно объяснить с помощью теорий хаоса, — см. Главу 24.) Увеличилось число и сложность уравнений, необходимых для описания движения планет. Во Франции аналитические методы предпочли геометрическим, и это привело к огромному числу громоздких уравнений. Аналитический подход наиболее ярко использовал Жозеф Луи Лагранж (1736–1813), создавший систему уравнений, известную как «лагранжиан». В его «Аналитической механике» (1788) на всех 500 страницах не было ни одной схемы. В 1799 году Лаплас издал первый том энциклопедического труда «Небесная механика», в котором особое внимание уделялось теории потенциалов и теории возмущений.