KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Jose Santonja - Физика учит новый язык. Лейбниц. Анализ бесконечно малых.

Jose Santonja - Физика учит новый язык. Лейбниц. Анализ бесконечно малых.

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Jose Santonja, "Физика учит новый язык. Лейбниц. Анализ бесконечно малых." бесплатно, без регистрации.
Перейти на страницу:

Лейбниц утверждал, что постоянным является произведение массы на скорость в квадрате {mν2) — то, что он назвал vis viva, или живой силой. Эта живая сила является величиной, в два раза большей той, которую мы сегодня знаем как кинетическую энергию. Позже, в 1840 году, был сформулирован закон сохранения энергии в том виде, в каком мы знаем его сегодня. В нем говорится, что сумма потенциальной и кинетической энергии тела является постоянной. В "Динамике" Лейбниц сформулировал два своих главных закона: закон сохранения живой силы и закон непрерывности движения.

Лейбниц предположил, что необходима одинаковая сила для того, чтобы поднять тело весом в один фунт (А) на высоту в четыре фута и тело весом в четыре фунта (В) — на высоту одного фута.


В 1692 году ученый написал "Очерк динамики", в котором собрал и систематизировал все свои идеи о динамике. В нем он говорит о разнице между статической, или мертвой, силой и силой кинетической, то есть живой. В качестве примера первой он приводит центробежную силу и тяготение, утверждая, что при столкновениях возникает живая сила. Работа была опубликована только в 1860 году, но Лейбниц представил несколько отрывков в виде статей в "Актах ученых".

Итак, Лейбниц рассматривал силу в двух значениях. С одной стороны, это пассивная сила, которая скрывается в массе тела, и с другой — живая, или активная, сила, благодаря которой появляется движение. Вторая сила, в свою очередь, делилась на две. Это первообразная сила, существующая в каждом теле сама по себе, и производная — возникающая при столкновении тел: она, согласно Лейбницу, единственная принимает участие в движении.


Приближается конец

Последние три года жизни Лейбница были довольно тяжелыми. В марте 1714 года умер его близкий друг — герцог Антон Ульрих, который много лет поддерживал его перед императором и защищал от курфюрста. В июне того же года ученый потерял свою подругу и ценительницу, курфюрстину-вдову Софию Ганноверскую. Осталась только принцесса Каролина, с которой он обычно беседовал так же, как с двумя предыдущими курфюрстинами.

Когда через пару месяцев после Софии умерла Анна, королева Англии, курфюрст Георг Людовик стал королем Великобритании Георгом I. В связи с этим он переехал вместе со всем своим двором, включающим и сына Георга Августа, нового принца Уэльского, в Англию. Лейбниц, который находился в Вене уже несколько месяцев и не мог никуда ездить из-за проблем со здоровьем, сделал усилие и приехал в Ганновер, чтобы попрощаться с курфюрстом, но тот уже отправился в Лондон.

Хотя ученый решил в следующем месяце отправиться в Англию вместе с принцессой Каролиной, ему пришлось отказаться от путешествия из-за плохого самочувствия. Позже Лейбниц получил несколько писем от министра Бернсторфа, который давал ему указание не ехать в Англию и сосредоточиться на своем неоконченном труде по истории. В начале 1715 года сам король послал ему приказ не совершать никаких дальних поездок, пока он не закончит историческую работу.

Итак, ученый провел последние годы жизни без друзей и ограниченный в передвижениях. Время шло, а он все никак не мог закончить свою гигантскую работу.

Также он ввязался в дискуссию с королевским капелланом Сэмюэлем Кларком, другом Ньютона, у которого уже было столкновение с принцессой Каролиной по поводу философии Лейбница. В пяти письмах, которые ученый послал Кларку, он выступал против философии Ньютона, указывая на его главные (как он думал) ошибки. Во-первых, Лейбниц считал, что Богу необходим орган чувств, чтобы воспринимать вещи, иначе воспринимаемые объекты не зависели бы от Него полностью и Он не мог бы их в свое время создать. Во-вторых, он утверждал, что в мире всегда присутствует одно и то же количество силы (vis viva), которая переходит от одних вещей к другим по законам природы, и вмешательства Бога в этот процесс (в противовес утверждениям сторонников Ньютона) не требуется. Последнее письмо, полученное им от Кларка, пришло за несколько дней до смерти Лейбница.

В июле 1716 года король Георг посетил Ганновер и провел несколько дней, отдыхая в Бад-Пирмонте. Ученый сопровождал его все время, и казалось, что прежнее напряжение между ними исчезло. Однако это примирение уже мало что значило, поскольку 14 ноября Лейбниц умер у себя дома, оставив в качестве единственного наследника своего племянника Фридриха Симона Лёффера. Уже в начале этого — последнего — месяца подагра поразила руки ученого, из-за чего он больше не мог писать, и врачи не могли ему ничем помочь.

Как рассказывал Иоганн Георг фон Экхардт, секретарь Лейбница и его первый биограф, на похоронах ученого присутствовали только его друзья и самые близкие родственники. Хотя двор был оповещен и находился довольно близко, от него не пришел ни один представитель. Это были похороны незаметного человека — современники из Ганновера не придали смерти Лейбница большого значения. Только в конце века был установлен памятный бюст из белого мрамора с надписью Genio Leibniti. Академии и сообщества, к которым принадлежал Лейбниц, не совершили никаких актов в его честь, хотя многие научные журналы, с которыми он сотрудничал, опубликовали некрологи.

Только через полвека после смерти Лейбница началась переоценка его личности. Этому способствовали публикации некоторых очерков ученого и его переписки с великими людьми, а также исследование его философии Иммануилом Кантом. В наши дни этот ученый гораздо более известен, чем при жизни. Слава Лейбница подтверждается, например, тем, что в 1970 году его именем назвали кратер на Луне. В 1985 году в Германии была создана премия имени Лейбница, считающаяся одной из главных наград за вклад в науку. А в 2006 году Ганноверский университет сменил название на Университет Вильгельма Лейбница.

Список рекомендуемой литературы

Aiton, E.J., Leibniz. Una biografia, Madrid, Alianza, 1992.

Bell, E.T., Losgrandes matematicos, Buenos Aires, Losada, 2010.

Boyer, C.B., Historia de la matemdtica, Madrid, Alianza, 1986.

Chica, A., Descartes. Geometria у metodo, Madrid, Nivola, 2001.

Duran, A.J., Historia, con personajes, de los conceptos del calculo, Madrid, Alianza, 1996.

Gonzalez Urbaneja, P.M., Las raices del calculo infinitesimal en el siglo xvii, Madrid, Alianza, 1992.

Holton, G., Introduccion a los conceptos у teorias de las cienciasfisicas, Barcelona, Reverte, 1988.

Munoz, J., Newton. El umbral de la ciencia modema, Madrid, Nivola, 1999.

Newman, J.R., Sigma. Elmundo de las matemdticas, Barcelona, Grijalbo, 1968.

Stewart, I., Historia de las matematicas, Barcelona, Critica, 2008.

Taton, R., Historia general de las ciencias, Barcelona, Orbis, 1988.

Torra, V., Del abaco a la revolucion digital. Algoritmos у computacion, Barcelona, RBA, 2011.

Torrija, R.f Arqutmedes. Alrededor del circulo, Madrid, Nivola, 1999.

Указатель

Авиценна 146,147 Академия

Берлинская 40, 41, 43, 87, 112, 120,129,142

наук Парижская 33, 36, 63, 65, 92,123,127,138

наук Прусская 13, 40,137

"Акты ученых" 13,42, 74,102, 106.118.133.149.159

Антон Ульрих Вольфенбюттельский 122,142,160

Аристотель 20, 145, 146,150, 151

арифметическая машина 13,15, 33, 43, 52-58, 62, 64-66,122, 146

Архимед Сиракузский 68, 78-82, 87, 88,107

Барроу, Исаак 94,95, 98, 99, 102— 104,106

Бернулли Иоганн 11, 36, 71, 106, 107, 119,133

Якоб 11,40,106,107,119,133

Бернсторф, Андреас Готлиб фон 141.159

бесконечные ряды 13, 62, 66-72, 104

Бойль, Роберт 9, 30, 38, 64, 72,146, 147

Бойнебург, Иоганн Христиан фон 13, 31, 32,61

Буве, Иоахим 128,130 Бэкон, Фрэнсис 9, 20, 36, 86

Вариньон, Пьер 36,138

Вивиани, Винченцо 38, 40

Виет, Франсуа 69, 85

Вольтер 80,143

Вольфенбюттель 116,122,127, 137,140

Галилей, Галилео 9,10, 31, 38, 63, 86, 91, 97,150,151-153,158

Галлей, Эдмунд 119

Гассенди, Пьер 20, 35,153

Гаусс, Карл Фридрих 17

Георг Август Брауншвейг-Люнебургский (Георг II, король Великобритании) 13, 74,134, 137,139,159

геология 135,147-150

Герике, Отто фон 62

Гоббс, Томас 9, 20,158

Грегори, Джеймс 69, 70, 95, 98,132

Гримальди, Клаудио Филиппо 128

Гук, Роберт 37, 38,42, 64,147

Гюйгенс, Христиан 9, 36-38,42, 62, 63, 65, 70, 88, 97,104, 107, 119,151,154,156-158

Декарт, Рене 10, 31, 34-36, 40,42, 63, 77, 86, 88, 90, 93, 96,104, 106,118,132,153,158,159

Демокрит 68,145

династия Брауншвейг-Люнебург 13, 74, 76, 113, 114,133,137, 142

Диофант Александрийский 77, 84

Дюилье, Фатио 105,119,138

Евдокс Книдский 83 Евклид 20, 77, 83, 84,128

"Журналь дэ саван" 41,107,121

Жюстель, Анри 73,119,120

законы движения 9,151,153,156

"И Цзин" 109, 127,128,129

Иоганн Фридрих Ганноверский 65

Кавальери, Бонавентура 91-93, 133

Каркави, Пьер 33, 62

Каролина Ансбахская 139

касательная 95-98,102,103,158

Кеплер, Иоганн 9, 36, 52, 54, 86, 98,154

Кирхер, Афанасий 40,148,149

китайская культура 8, 13, 122, 127-129,141,144

Кларк, Сэмюэль 161

Коллинз, Джон 66,104

комбинаторика 24-30,101,121, 143

Королевское общество 11,13,36, 38, 40, 42, 64,66, 72,99,104, 105,154

Лаплас, Пьер-Симон де 50

Леопольд I, император Священной Римской империи 12,115, 139

логарифмическая линейка 50-54, 131

логарифмы 10, 15, 47, 50-52, 54

Лопиталь, маркиз де 36,107,108, 119

Луллий, Раймунд 13, 23, 26-29

Людовик XIV, король Франции 8, 32, 33, 38, 56

Мальбранш, Николя 36

медицина 22, 38,120,121

Менке, Отто 42, 74

Мерсенн, Марен 34-37, 40, 55,90

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*