KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Ричард Манкевич - История математики. От счетных палочек до бессчетных вселенных

Ричард Манкевич - История математики. От счетных палочек до бессчетных вселенных

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Манкевич, "История математики. От счетных палочек до бессчетных вселенных" бесплатно, без регистрации.
Перейти на страницу:

Теперь давайте хотя бы бегло рассмотрим, как развивались события, предшествовавшие рождению дифференциального и интегрального исчислений, — например, каким образом определялись тангенсы кривых. Пьер де Ферма (1601–1665) добился некоторых важных результатов, однако не стал публиковать их. Вместо этого он активно делился своими открытиями в переписке со многими математиками того времени. Эту корреспондентскую сеть организовал Маренн Мерсенн (1588–1648). Ферма разработал методы, позволяющие найти тангенс в любой точке полинома, а также методы определения максимума и минимума этой кривой. Он также вновь открыл правила Кавальери для вычисления площадей фигур, ограниченных кривыми вида у = хn, расширив их множество таким образом, что теперь n могло быть как положительным, так и отрицательным. Единственным случаем, выходящим за рамки общего правила, был случай n = -1 — эта кривая, как известно, представляет собой логарифмическую функцию. Методы Ферма очень близки тем к современному дифференциальному исчислению, за исключением того, что у Ферма не использовалось понятие предельного перехода. Ни в одном из трудов ученого, посвященных анализу бесконечно малых величин, не упоминается, что задачи построения тангенсов и вычисления площадей, по существу, обратны по отношению друг к другу. При этом он не расширил диапазон используемых функций.

Изобилие до-дифференциальных и до-интегральных методов вскоре сформировалось в новую ветвь математики. Как это часто бывает в истории, революционные методы уже витали в воздухе и только и ждали человека, способного уловить их и придать им зримую форму. В данном случае честь изобретения метода отдается сразу двум ученым — Исааку Ньютону и Готфриду Лейбницу. Как в случае любого совместного изобретения, всегда есть некоторое сомнение в том, кто из них все-таки оказался первым, так что споры об этом шли по всей Европе.

Исаак Ньютон родился на Рождество 1642 года — в год смерти Галилея. В 1661 году он поступил в Тринити-колледж в Кембридже, а в 1664-м — получил диплом о высшем образовании. В течение последующих двух лет колледж был закрыт из-за чумы, и Ньютон возвратился домой в Линкольншир. Позднее он писал, что именно тогда совершил известные прорывы в науке — открыл уравнение с бесконечным рядом членов, закон всемирного тяготения, а также дифференциальное и интегральное исчисления. Это могло бы показаться чрезмерным упрощением, но в 1669 году он написал работу «Анализ с помощью уравнений с бесконечным числом членов», в которой он рассматривал бесконечный полином так же, как конечный, и позднее распространил бином Ньютона на любую рациональную степень. «Анализ…» также содержал первое описание дифференциального и интегрального исчислений, основанных на методе, похожем на метод Ферма, однако в нем использовались большие степени вследствие работы с бесконечными рядами. Именно в этом труде вычисление площади фигуры, ограниченной кривой, впервые было представлено как задача, обратная нахождению тангенса. В 1671 году Ньютон написал другой труд о том, что он назвал флюентами и флюксиями — переменными, или текущими, величинами (флюент — от лат. fluo, «теку»), и скоростями их изменения. В этой работе он изображал величины х и у как функции времени, а х´ и у´ — как скорости их изменения. Величины, насколько изменяются сами х и у — собственно производные, — были обозначены х´ и у´. Ньютон пришел к этой идее, рассматривая линию как местоположение точки, перемещающейся в пространстве. Время служит в этой системе невидимым хронометром и не появляется в качестве отдельной переменной t. К сожалению, Ньютон держал все рассуждения при себе, показывая коллегам лишь некоторые из своих работ. «Анализ…» не издавалась вплоть до 1711 года, а описание метода вычисления производных появилось на английском языке лишь в 1736 году. Впервые ученый кратко опубликовал свои выводы — в виде нескольких, крайне трудных для понимания пассажей — в «Началах», изданных в 1687 году. В самих «Началах» дифференциальное и интегральное исчисления практически не фигурируют. Ньютон описывал все свои построения в области математической физики, пользуясь терминами геометрии. Его упорный отказ издавать свои работы можно объяснить отвращением к публичным спорам и дрязгам, которые могли за ними последовать. Он уже конфликтовал с Робертом Гуком по вопросам оптики (Ньютон дождался смерти коллеги и лишь затем опубликовал свою «Оптику»). Даже «Начала» никогда не появились бы на свет, если бы не настоятельные требования и финансовая поддержка Эдмунда Галлея. Ньютон хотел лишь одного — чтобы его оставили в покое и не мешали работать. В итоге это привело к самому решительному сражению в его жизни.

В «Началах» есть раздел (это Отдел I Книги I), носящий название «О методе первых и последних отношений, при помощи которого последующее доказывается». В нем Ньютон дает геометрическую трактовку ключевых идей, касающихся дифференциального и интегрального исчислений. В другом разделе перечисляются некоторые результаты того, что Ньютон назвал «моментом любого происхождения», — теперь мы назвали бы это термином «дифференциал». Это первое публичное упоминание о новом виде исчисления, и неудивительно, что, кроме нескольких математиков, научный мир поначалу не пришел в восторг. Ньютон шел от геометрических доказательств к обобщенным результатам, не приводя алгебраические манипуляции. В тексте он признал, что в таком виде метод легче представлять, но он все еще беспокоится, что доказательство его теории бесконечно малых величин достаточно шатко. Ньютон — не первый ученый, взявшийся за дифференцирование и интегрирование, но именно он впервые создал прочную конструкцию, в которой эти две операции были обратны друг другу. Своими бесконечными рядами он чрезвычайно расширил диапазон функций, с которыми теперь можно было работать.

А что такое эти флюксии? Скорости исчезающих приращений. А что такое эти самые исчезающие приращения? Они не есть ни конечные величины, ни величины бесконечно малые, но они и не нули. Разве мы не имеем права назвать их призраками исчезнувших величин?

Джордж Беркли. Аналитик (1734) [17]

Давайте внимательно присмотримся к проблеме, за которую взялся Ньютон. Если мы возьмем точку на кривой и пожелаем определить наклон касательной в этой точке, мы можем выбрать вторую точку, близкую к первой, и соединить эти две точки прямой. Мы также можем построить прямоугольный треугольник, в котором эти две точки находятся на концах гипотенузы. Отношение двух других сторон треугольника дает нам наклон линии, соединяющей точки. Если мы представим себе, что вторая точка медленно перемещается в сторону первой, мы сможем увидеть, что по мере того, как наш треугольник становится все меньше и меньше, наклонная линия становится все более похожей на касательную. Если эти две точки встретятся, мы увидим касательную, а треугольник исчезнет, и две стороны, которые давали нам числовое значение угла наклона, будут равны нулю. В таком случае мы имеем соотношение двух нулей, которое и дает нам ответ! На языке Ньютона наше конечное соотношение исчезающе малых величин — реальная величина. Таким образом, прочность метода исчисления была основана на уверенности самого Ньютона, а широкое распространение было обеспечено его широкой применимостью. Однако сомнения относительно правильности основ метода все же сохранялись, и впоследствии ученые возвратились к проблеме вычисления бесконечно больших и бесконечно малых величин. Вскоре после смерти Ньютона философ Джордж Беркли (1685–1753) в своей работе «Аналитик» яростно напал на дифференциальное и интегральное исчисления, выдвигая на первый план логические проблемы этого метода, о которых математики были отлично осведомлены. Он набросился на теорию Ньютона с яростным религиозным фанатизмом, обвинив математиков в ереси за то, что они верили в «призраки усопших величин».

Готфрид Вильгельм Лейбниц (1646–1716) родился в Лейпциге, там же он изучал богословие, право, философию и математику. Университет отказал ему в докторской степени по законоведению, потому что ученый был слишком молод — ему было всего двадцать лет, так что защищать диссертацию Лейбниц отправился в Альтдорф-Нюрнберг. После получения степени он отказался от предложения преподавать право и стал советником, историком, библиотекарем и дипломатом на службе у герцога Эрнеста-Августа Брауншвейг-Люнебургского (Ганновер). О нем нередко говорят как о последнем великом универсале, который особенно интересовался логикой и созданием основ всеобщего языка. Возможно, именно поэтому языком счисления, который используется сегодня, мы в значительной степени обязаны Лейбницу. Ему принадлежат термины «дифференциальное исчисление» и «интегральное исчисление», равно как запись dy/dx и dx. Дипломатическая должность давала Лейбницу возможность путешествовать. В 1613 году он посетил Лондон, где стал членом Королевского общества. А в 1676 году ученый вернулся туда, чтобы продемонстрировать новую механическую вычислительную машину. Во время этого визита он не был знаком с Ньютоном, но позднее историки науки много спорили о том, мог ли тогда Лейбниц прочитать «Анализ…». Эти два математика много переписывались, обмениваясь мнениями относительно бесконечного ряда.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*