KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Ник Лейн - Лестница жизни. Десять величайших изобретений эволюции

Ник Лейн - Лестница жизни. Десять величайших изобретений эволюции

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ник Лейн, "Лестница жизни. Десять величайших изобретений эволюции" бесплатно, без регистрации.
Перейти на страницу:

Именно это и происходит. Откладываемая растительная биомасса хоронится в виде каменного и бурого угля, нефти, природного газа и пыли, образуя породы, спрятанные глубоко в недрах земли. Согласно результатам революционных исследований геохимика Роберта Бернера, работавшего в Йельском университете, в земной коре залегает примерно в 26 тысяч раз больше "мертвого” органического углерода, чем содержится во всем живом в биосфере. Каждый атом углерода есть нечто обратное молекуле атмосферного кислорода. На всякий атом углерода, который мы добываем из-под земли и сжигаем как топливо, из атмосферы выхватывается одна молекула кислорода и превращается снова в углекислый газ, что приводит к серьезным, хотя и непредсказуемым последствиям для климата. К счастью, нам никогда не удастся истощить запасы атмосферного кислорода, сжигая ископаемое топливо, даже если мы вызовем настоящую климатическую катастрофу: подавляющее большинство органического углерода хоронится в виде микроскопического детрита в таких горных породах, как сланцы, сжигать которые в промышленных масштабах невозможно или, по крайней мере, экономически невыгодно. До сих пор, несмотря на все наши попытки сжечь все известные запасы ископаемого топлива, мы снизили концентрацию кислорода в атмосфере лишь на 0,001 %1.

Но этот огромный запас захороненного органического углерода не формируется постоянно: он откладывался на протяжении прошедших геологических эпох лишь периодически. В норме на Земле сохраняется положение, очень близкое к равновесию, при котором дыхание сводит на нет результаты фотосинтеза (а эрозия сводит на нет результаты отложения органики), так что в общем счете почти никакого захоронения углерода не происходит. Поэтому концентрация кислорода в атмосфере и остается на уровне примерно 21 % уже не один десяток миллионов лет. Но в редких случаях, в геологической древности, дела обстояли совсем по-другому. Наверное, самый впечатляющий пример - это каменноугольный период (карбон), около трехсот миллионов лет назад, когда по воздуху летали стрекозы размером с чайку, а по лесам шныряли многоножки длиною в метр. Эти гиганты были обязаны своим существованием исключительно высокой скорости происходившего в то время отложения углерода (так сформировались огромные запасы каменного угля, благодаря которым период и получил свое название - каменноугольный). За время отложения углерода на дне болот уровень кислорода в атмосфере подскочил до 30 %, давая некоторым существам (а именно животным, поглощающим кислород не путем активной вентиляции легких, а за счет пассивной диффузии в пронизывающих тело трахеях или на поверхности кожи) возможность достигать размеров гораздо больших, чем обычно2.

Чем была обусловлена беспрецедентная скорость отложения углерода в каменноугольный период? Почти наверняка - целым набором случайных факторов: взаимное расположение континентов, влажный климат, наличие обширных затапливаемых равнин, а также (что, возможно, особенно важно) появление в ходе эволюции лигнина, благодаря чему возникли большие деревья и другие крепкие растения, способные заселять обширные площади суши. Лигнин, который грибам и бактериям трудно разлагать даже сегодня, вскоре после своего появления был, судя по всему, и вовсе никому не по зубам. Поэтому его никто и не разлагал, добывая энергию, и он в огромных количествах оставался нетронутым, в то время как выделенный при его синтезе кислород насыщал атмосферу.

В истории Земли было и два других эпизода, когда сочетание случайных геологических факторов приводило к существенному повышению уровня кислорода в атмосфере. Оба эти эпизода были, возможно, связаны с глобальными оледенениями (предполагаемыми так называемой гипотезой “Земли-снежка”). Первое сильное повышение уровня кислорода в земной атмосфере произошло около 2,2 миллиарда лет назад, сразу вслед за периодом бурных геологических сдвигов и глобального оледенения. Второй период глобального оледенения (примерно с восьмисот до шестисот миллионов лет назад), судя по всему, тоже привел к повышению уровня кислорода. Эти глобальные бедствия, по-видимому, сказывались на равновесии фотосинтеза и дыхания, а также отложения осадочных пород и эрозии. Когда великие ледники таяли и начинали лить дожди, минералы и питательные вещества (железо, нитраты и фосфаты), соскобленные льдом с горных пород, смывались в океан, где вызывали бурное “цветение” водорослей и фотосинтетических бактерий, подобное “цветению воды”, к которому сегодня приводит использование удобрений, но, вероятно, гораздо большее по масштабам. Этот смыв должен был не только вызывать “цветение” фотосинтезирующих организмов, но и способствовать их захоронению: пыль, грязь и песок, попадавшие в океан, смешивались с “цветущими” бактериями и оседали на дне, приводя к беспрецедентному отложению углерода. А это, в свою очередь, приводило к тому, что уровень насыщенности атмосферы кислородом в масштабе планеты возрастал всерьез и надолго.

Итак, судя по всему, становление кислородной атмосферы на нашей планете было во многом случайным. Это впечатление лишь усилится, если принять во внимание отсутствие каких-либо изменений на протяжении других, весьма продолжительных периодов. С двух миллиардов примерно до одного миллиарда лет назад (в период, который геологи называют “скучным миллиардом” лет) на Земле, похоже, не произошло почти ничего примечательного. Концентрация кислорода в течение этого периода оставалась постоянной и довольно низкой, как, впрочем, бывало и в другие периоды, длившиеся сотни миллионов лет. Застой был нормой, но эпизоды геологических пертурбаций порой вносили серьезные изменения. Подобные геологические факторы могут работать и на других планетах, но, судя по всему, для совпадения обстоятельств, необходимого для накопления кислорода, требуется движение литосферных плит и вулканическая активность. Предположение, что фотосинтез мог давным-давно возникнуть на Марсе, не выходит за рамки возможного, но эта небольшая планета с ее угасающей вулканической активностью не могла поддерживать геологические потоки, которые позволили бы кислороду накапливаться. Поэтому если фотосинтез и мог на ней возникнуть, впоследствии он должен был повсеместно прекратиться.

Но есть и вторая, еще более важная причина, почему фотосинтез не обязательно должен приводить к формированию на планете кислородной атмосферы. Сам фотосинтез мог вообще не прийти к использованию воды в качестве сырья. Травы, деревья, водоросли - все они фотосинтезируют принципиально одинаково, выделяя кислород. Этот процесс называют кислородным фотосинтезом. Но если мы отступим на несколько шагов назад, к бактериям, то окажется, что есть и другие опции. Некоторые сравнительно примитивные бактерии используют для фотосинтеза не воду, а растворенное железо или сероводород. Если нам кажется, что такое сырье не годится для фотосинтеза, то только оттого, что мы привыкли к своему кислородному миру (продукту кислородного фотосинтеза) настолько, что нам трудно представить себе условия, которые были на Земле в древнейшие времена, когда фотосинтез впервые возник.

Нам также трудно оценить суть парадоксального, но на самом деле простого механизма фотосинтеза. Приведу пример, который, как я подозреваю (возможно, несправедливо), отражает общепринятое понимание фотосинтеза. Это отрывок из очаровательной книги Примо Леви “Периодическая система", опубликованной в 1975 году и объявленной “лучшей научно-популярной книгой всех времен” по результатам голосования, проводившегося в 2006 году среди публики (я тоже принял участие) в лондонском Королевском институте:

Углерод проникает внутрь листа, сталкиваясь там с множеством других (в данном случае бесполезных) молекул углерода и кислорода, присоединяется к большой и сложной молекуле, благодаря которой активизируется и одновременно получает важнейшее послание небес в виде сверкающего пучка солнечных лучей, после чего в одно мгновенье, как насекомое в лапах паука, лишается кислорода и соединяется с водородом, а также (есть такая версия) с фосфором, включаясь в цепь жизни (не важно, длинную или короткую).

Заметили ошибку? На самом деле их даже две, и очень жаль, что Леви их допустил, ведь в химическом механизме фотосинтеза по-настоящему удалось разобраться лет за сорок до сочинения его книги. “Сверкающий пучок солнечных лучей” не активирует молекулу углекислого газа: ее с тем же успехом можно активировать и среди ночи. Более того, она и не может активироваться светом, даже на самом что ни на есть солнцепеке. Кроме того, углерод не лишается кислорода в одно мгновение: кислород упорно отказывается расставаться с углеродом. Леви в своем рассказе исходит из распространенного, но ошибочного представления, будто кислород, выделяемый при фотосинтезе, берется из углекислого газа. Но это не так. Он происходит из воды, а это совсем другое дело. Осознать это - значит сделать первый шаг на пути к пониманию истоков фотосинтеза.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*