KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Rafael Lahoz-Beltra, "Размышления о думающих машинах. Тьюринг. Компьютерное исчисление" бесплатно, без регистрации.
Перейти на страницу:

Одна из важнейших работ Тьюринга была связана с изучением формирования полосок и пятен на шкуре позвоночных. Невероятно, но эти актуальнейшие исследования по морфогенезу ученый осуществлял с использованием нейронной цепи: он предположил, что между этими явлениями может быть связь. Также он пытался проанализировать, не является ли сама структура мозга и, следовательно, нейронных схем результатом контроля генов в ходе развития. Вопрос, поставленный Тьюрингом, звучал следующим образом: как формируются полоски и пятна на шкуре млекопитающих, рыб и поверхности моллюсков? В 1952 году Алан Тьюринг опубликовал статью «Химические основы морфогенеза», которую цитируют до сих пор. В ней была предложена гипотеза о том, что формирование, например, пятен далматинца или полосок зебры, основано на механизме реакции — диффузии.

Тьюринг считал, что у эмбрионов рисунок кожи имеет одинаковый вид и находится в стабильном состоянии, без пятен и полосок. Появление рисунка у эмбриона объясняется наличием клеток, производящих пигмент и ответственных за нарушение первоначального равновесия. Так возникают, например, характерные полоски у зебры. Эту окраску, обычную для взрослой особи, Тьюринг считал результатом нестабильного состояния организма. Он предположил следующий механизм: пигментные клетки образовывают два класса молекул, два разных типа морфогенов. Согласно определению самого Тьюринга, один тип (активаторный) способствует появлению рисунка, другой (ингибиторный) замедляет появление рисунка и нейтрализует активаторный морфоген. Два типа молекул распространяются по ткани эмбриона, взаимодействуя между собой, в результате получается определенный тип концентрации, или «след», который задает направление развития клеток эмбриона и, таким образом, формирует окрас взрослой особи. На основе этих рассуждений Тьюринг предложил уравнения реакции — диффузии, которые по сей день являются фундаментальными при изучении морфогенеза с помощью математики и компьютера. Работы по росту и развитию организмов стали последними в жизни Тьюринга.

В 2003 году чемпион мира по шахматам Гарри Каспаров сыграл четыре партии с шахматной программой Fritz, из которых две закончились вничью, а две оставшиеся выиграли по одному разу каждый из противников. На фотографии: Каспаров изучает движения на начальных минутах партии.

Дом в Уилмслоу (Чешир, Англия), где жил и покончил с собой Тьюринг.


ТРАГИЧЕСКАЯ РАЗВЯЗКА

В начале 1952 года Алана Тьюринга арестовали и судили по обвинению в непристойном поведении, после чего приговорили к принудительной гормональной терапии. Инъекции эстрогена считались более приемлемым наказанием по сравнению с тюремным заключением, в особенности для такого известного человека. Тьюринг впал в глубокую депрессию. Ассистентка ученого 8 июня 1954 года обнаружила его мертвым: он съел яблоко, отравленное цианистым калием. Тьюрингу был 41 год. Его мать, Сара Тьюринг, отвергала версию о самоубийстве, связывая смерть сына с его увлечением химией.


Глава 5

Наследие Алана Тьюринга

Ранняя смерть унесла великого ученого эпохи на 42-м году жизни, но его труды и наследие живут.

Если жизнь и смерть Тьюринга могли вызывать дискуссии, то его вклад в развитие науки бесспорен, а работы до сих пор не потеряли своей актуальности. Можно сказать, что многие технические достижения нашли свое воплощение благодаря работам ученого.

Несмотря на короткую жизнь, Алан Тьюринг остается одним из самых талантливых и влиятельных ученых XX века. Его работы не только заложили теоретические основы информатики — он сделал первые шаги в сфере искусственного интеллекта и математической биологии. Но в наследии Тьюринга можно выделить и еще один интересный момент: помимо трудов, опубликованных в научных изданиях, он оставил множество документов с комментариями, отметками и замечаниями. Удивительно, что многие из высказанных Тьюрингом идей успешно развивались в дальнейшем, открывая новые области знания. Мы опишем некоторые из этих исследований, наиболее интересные как интеллектуальный вызов или с точки зрения последующего применения. В частности, учитывая весьма значительный вклад Тьюринга в данный проект, мы опишем квантовый компьютер, а напоследок поговорим о биоинформатике, разработке и применении искусственных нейронных схем в повседневности.

В 1985 году израильский ученый из Оксфорда Дэвид Дойч (р. 1953) разработал квантовую машину Тьюринга. Хотя по структуре эта машина похожа на предшественницу, глубинное различие между ними кроется в том, что вместо обработки нулей и единиц, то есть бит, машина Дойча оперирует кубитами (qbits). Если машина Тьюринга стала концептуальной базой современных компьютеров, то квантовая машина Тьюринга станет такой базой для компьютеров нового поколения. Хотя Алан Тьюринг не предлагал версии, основанной на принципах квантовой механики, в течение жизни его определенно интересовали идеи и основные достижения этого направления физики, объясняющего материю и энергию. Ученый начал заниматься квантовой механикой еще в школьные годы, после прочтения знаменитой книги Артура Эддингтона «Природа физического мира» ( The nature of the physical world, 1928), в которой рассказывалось о квантовой физике и общей теории относительности. Кроме этого, дружба с Кристофером Моркомом подтолкнула Тьюринга к занятиям разными научными дисциплинами, среди которых была и квантовая механика.


В будущее мы можем заглянуть только на короткий срок, но и этого достаточно, чтобы увидеть, сколь много еще должно быть сделано.

Алан Тьюринг. «Вычислительные машины и разум»


Несколько лет спустя ученый задался вопросом, можно ли какой-то аспект человеческого мозга, например волю, объяснить механизмами нейронных сетей. Его идеи были близки идеям других гениев эпохи, например Курта Гёделя: тот полагал, что на определенных этапах доказательства математической теоремы человек прибегает к интуиции, которая не может быть представлена в виде алгоритма и поэтому не может быть реализована с помощью машины Тьюринга. С тех пор некоторые ученые считали, что отдельные функции мозга могут быть объяснены только с точки зрения квантовых процессов в мозговых или нейронных клетках. В конце XX века британский физик Роджер Пенроуз (р. 1931) и американский врач Стюарт Хамерофф (р. 1947) высказали идею о том, что человеческая совесть может быть объяснена квантовыми процессами в структурах, сформированных белками, так называемых микротубулах, имеющихся в нейронах. Следовательно, феноменами квантовой механики могут быть объяснены не только воля, интуиция, совесть, но и способность человеческого мозга решать невычислимые задачи.

Эти рассуждения не могут не привести к поистине необычному выводу: на сегодняшний момент мозг человека представляет собой единственную машину, способную решать вычислимые и невычислимые задачи. К вычислимым задачам относятся такие, которые можно решить с использованием алгоритма, то есть с помощью универсальной машины Тьюринга, или компьютера. Второй тип задач невозможно представить в виде алгоритма и, следовательно, решить на компьютере. Например, мы можем написать программу для компьютера, которая, применив ряд Тейлора, распечатает нам все десятичные числа √2 или π:

π = 4(1 - 1/3 + 1/5 - 1/7 + ... + (-1)k • 1/(2k+1))

Однако не существует алгоритма, с помощью которого компьютер записал бы все десятичные числа других существующих чисел с бесконечной последовательностью знаков после запятой. Еще один пример невычислимой задачи — определение траектории электрона, движущегося из точки А в точку В. Простой опыт, с помощью которого можно доказать, что человеческий мозг способен практически мгновенно определить невычислимость задачи, состоит в том, чтобы попробовать найти два четных числа, сумма которых была бы нечетной. Через пару секунд, после нескольких попыток вычислений в уме, мы придем к выводу, что эта задача не имеет ответа, но невозможно написать программу для компьютера, способную прийти к такому же выводу. И дело здесь не в умениях программиста или длине программного кода.

В вычислимой задаче, например написать все десятичные значения числа π, некоторые аспекты могут показаться любопытными, например то, что количество команд программы, генерирующей десятичные знаки числа π, будет короче, чем сама генерируемая последовательность:

3,141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609...

Квантовые компьютеры однажды помогут ликвидировать это ограничение машин Тьюринга, то есть будут готовы обрабатывать так же, как наш мозг, вычислимые и невычислимые задачи в традиционном понимании термина. Квантовая машина Тьюринга может воспроизводить и квантовые, и традиционные вычисления. Квантовые компьютеры помогут справиться с задачами, решение которых сегодня вызывает много трудностей и требует рассмотрения огромного количества переменных и уравнений. Так, например, обстоит ситуация с климатическими моделями и сложными химическими реакциями. Применение таких компьютеров в криптографии сделает практически невозможной расшифровку перехваченных сообщений, что вполне удавалось Тьюрингу и его коллегам в Блетчли-парке. Шифрование сообщений с помощью квантовых алгоритмов позволит сделать коммерческие операции в интернете и через другие средства связи совершенно безопасными. Конечно, как это было всегда, еще одним способом использования новых компьютеров наверняка станут военные нужды, например моделирование ядерного взрыва. В сфере искусственного интеллекта уже существуют искусственные квантовые модели нейронов. Их возможности будут очень полезны для моделирования в астрономии, физике и химии. Найдут они применение и в сфере развлечений, например при создании спецэффектов в кино.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*