KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Jose Santonja - Физика учит новый язык. Лейбниц. Анализ бесконечно малых.

Jose Santonja - Физика учит новый язык. Лейбниц. Анализ бесконечно малых.

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Jose Santonja, "Физика учит новый язык. Лейбниц. Анализ бесконечно малых." бесплатно, без регистрации.
Перейти на страницу:

В октябре 1676 года по пути из Парижа в Ганновер Лейбниц провел неделю в Лондоне. Тогда Коллинз позволил ему списать фрагменты Historiola и "Анализа" самого Ньютона.

Ньютон и Лейбниц несколько раз обменивались письмами через Ольденбурга. Пятого августа 1676 года Ольденбург отправил Лейбницу письмо Ньютона, известное как Epistola prior, через Самуэля Кёнинга, который был с визитом в Париже; послание затерялось в бумагах и дошло до адресата только 26 числа этого месяца. В этом письме Ньютон делал особенный акцент на биноме и представлял еще несколько результатов, уже известных Лейбницу, не объясняя методов, с помощью которых он их получил. Лейбниц ответил ему на следующий день, уверяя, что его метод — другой. Во время полемики о первенстве открытия анализа многие делали акцент на том, что у Лейбница было почти три недели для внимательного изучения письма до того, как он ответил.

В 1677 году ученый получил второе письмо Ньютона, Epistola posterior, в котором тот объяснял ему все о своей работе с бесконечными рядами и также говорил о своем анализе, хотя представил его в виде криптограммы, основанной на латинских словах:

"Основа этих операций довольно очевидна, но поскольку я сейчас не могу продолжить объяснение, я предпочел оставить его скрытым: 6accd et 13eff.71319n4o4orr4s8tll2vx".

Эта бессмыслица после перевода с латыни означала: "Если задано любое уравнение, включающее некоторое число величин-флюэнт, найти флюксии, и наоборот". Она дополнялась еще более распространенной анаграммой, которая даже после дешифровки давала мало информации тому, кто не был знаком с данной темой.


Вторые изобретатели не берутся в расчет.

Исаак Ньютон о Лейбнице после полемики о первенстве


ОТКРЫТИЯ АНАЛИЗА БЕСКОНЕЧНО МАЛЫХ

После публикации своей первой статьи, посвященной анализу, в 1684 году у Лейбница возникли проблемы с авторством. И хотя он настаивал на том, что его метод отличается и что он нашел его до того, как познакомился с какой-либо работой Ньютона, о чем свидетельствовали письма, написанные Ольденбургу, это не помогло. Дело обострилось, когда Никола Фатио де Дюилье, ученик Ньютона, обвинил Лейбница в плагиате.

Обвинения начали летать туда-сюда между континентом и островом, а математики вставали на сторону того или другого ученого. Полемика разгорелась так жарко, что Лейбниц потребовал создать комиссию Королевского общества, чтобы определить, кто был прав в этой дискуссии. Комиссия, которая была создана Ньютоном, бывшим в то время председателем научного общества, пришла к выводу, что первенство было за английским ученым.

Из-за этого спора английские и европейские интеллектуалы прервали отношения и перестали обмениваться информацией. Ученые с континента поддержали Лейбница, а английские — Ньютона, но так как английская версия анализа в большей степени основывалась на геометрических методах, чем европейская, это стало помехой для английской математики, которая в условиях изоляции отстала от континентальной.


РАСПРОСТРАНЕНИЕ АНАЛИЗА

Метод Лейбница был быстро принят математиками европейского континента. Самыми преданными его "апостолами" были братья Якоб и Иоганн Бернулли, первые из большой семьи известных математиков. Работа Лейбница была оригинальной и результативной, но несколько незаконченной: иногда ей было сложно следовать. К счастью, братья Бернулли упорядочили ее, привнеся множество примеров и новых деталей. Лейбниц признал большой вклад, сделанный Бернулли, и даже подчеркнул, что они стали первыми, кто применил новый метод к решению физических проблем.

Якоб Бернулли (1654-1705) являлся самоучкой и был хорошо знаком с трудами главных предтеч анализа: Декарта, Уоллиса и Барроу. Он работал преподавателем математики в Базельском университете. Найдя одну из первых работ Лейбница по данной теме, Якоб самостоятельно освоил дифференциальное и интегральное исчисление. Он объяснил суть нового метода своему брату Иоганну, и они оба начали работать над анализом Лейбница. В 1690 году в "Актах ученых" Якоб опубликовал статью, в которой говорил о собственных методах анализа и решил задачу, предложенную Лейбницем за три года до этого: "Найти кривую, расположенную в вертикальной плоскости, по которой материальная точка опускается на одну и ту же длину за одно и то же время".

У Иоганна Бернулли (1667-1748) по прозвищу Задира было больше таланта и изобретательности, чем у брата. Он был великим геометром, хотя и не очень скромным (на его могильной плите выгравирована надпись: "Здесь лежит Архимед своего времени"). Он был убежденным защитником Лейбница и сторонником его приоритета в создании математического анализа. Иоганн поссорился с несколькими математиками, особенно со своим братом Якобом и сыном Даниилом. Он был преподавателем Эйлера и объяснял анализ маркизу Лопиталю, знатоку математики.

Действительно, Гийом Франсуа Антуан, маркиз де Лопиталь (1661-1704), нанял Иоганна для того, чтобы тот объяснил ему детали анализа бесконечно малых. На основе полученной на этих уроках информации он опубликовал первый в истории учебник математического анализа: "Анализ бесконечно малых для исследования кривых линий" (1696). Лопиталь издал его под своим именем, хотя большинство результатов, представленных в этой книге, принадлежали самому Бернулли.

Оба брата решили множество задач с помощью нового метода: спрямление кривых, вычисление кривизны, эвольвенты, эволюты и точки перегиба. Якоб уделил особое внимание логарифмической спирали и так восхищался ей, что в итоге распорядился изобразить ее на своей надгробной доске.

Одной из форм, благодаря которой больше всего распространялся анализ, была постановка задач. Предложить задачу, чтобы остальные математики ее решали, — в то время такой метод был очень популярен.

В статье 1690 года Якоб решил задачу, предложенную Лейбницем, но также поставил другую: найти форму, которую примет идеально гибкая и однородная кривая под действием только веса, если она закреплена с двух концов. Решением оказалась кривая, известная как цепная линия. Ответ на задачу, помимо Гюйгенса и Лейбница, был найден братом Якоба, Иоганном. Сам Лейбниц позже, в 1692 году, опубликовал статью в "Журналь дэ саван", где снова представил решение и объяснил, как использовать цепную линию в навигации.

В 1696 году Иоганн Бернулли снова бросил вызов математическому миру, особенно английскому, с целью доказать, кто лучше разбирается в новом вычислении. Он просил найти кривую, по которой тело опускается между двух точек, не выстроенных ни в вертикальную, ни в горизонтальную линию, за наименьшее возможное время. Данная кривая называлась брахистохрона. До окончания предусмотренного срока только Лейбниц представил решение, сочтя это очень красивой и до того времени неизвестной задачей. Он же попросил увеличить предоставленное время, чтобы другие математики смогли в срок найти решение. После окончания нового срока было предъявлено только пять решений: Лейбница, братьев Бернулли, Лопиталя и анонимное, присланное из Англии. Изучив последнее, Иоганн сказал: "Льва узнают по когтям". Конечно, оно принадлежало Ньютону. Итак, во всех решениях использовалось новое вычисление. Кстати, решение этой задачи — также обратная циклоида.

ГЛАВА 3

Древние и современные коды

Сегодня мы не представляем нашу жизнь без компьютеров. Но чтобы разбираться в них, нам необходимо освоить язык этих машин, то есть двоичную систему счисления. Именно Лейбниц заложил основы этой системы и, кроме того, усмотрел в ней связь с древними гексаграммами китайской гадательной книги "И Цзин". Он также занимался другими типами языков и даже хотел создать универсальный язык для математического выражения всех идей.

Проектом, который оказался для Лейбница сложной головоломкой, стала организация эксплуатации одной из шахт в Альт- Гарце, к югу от города Гослара, примерно в 100 км от Ганновера. В этих местах были большие залежи серебра, меди, железа и свинца. У Лейбница было несколько идей по улучшению технологии их добычи в шахте.

Среди сочинений, написанных ученым для герцога после посещения Гамбурга в 1678 году, было одно, над которым Лейбниц начал работать еще в Париже. Оно было посвящено тому, что сегодня мы называем возобновляемыми источниками энергии. Лейбниц создал проект системы насосов и ветряных мельниц, которые позволили бы использовать энергию ветра и гидроэнергию для улучшения дренажа шахт. Насосы, разработанные ученым, требовали минимального обслуживания. Конструкция его мельниц позволяла им работать даже при очень слабом ветре и с большей отдачей, чем обычные мельницы. Идея была в том, чтобы использовать мельницы все возможное время и заменять их гидроэнергией, когда они не могут работать. Таким образом создавался постоянно действующий в любое время года источник энергии, с помощью которого теоретически всегда была возможность выполнять необходимые водные и горные работы, поскольку во времена засухи работа шахт останавливалась.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*