KnigaRead.com/

Людмил Оксанович - Невидимый конфликт

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Людмил Оксанович, "Невидимый конфликт" бесплатно, без регистрации.
Перейти на страницу:

Но со временем конструкция разгружается, напряжения падают. Для удобства будем считать, что они уменьшаются до нуля. Но, как можно видеть на рабочей диаграмме, деформации исчезают не полностью, что не характерно для идеально упругого тела. Вопреки отсутствию напряжений деформации сохраняются. С течением времени они без видимой причины начинают уменьшаться. Это интересное явление, которое называется упругим последействием, или гистерезисом, обусловлено особенностями структуры материалов. Но в любом случае деформация не исчезает полностью. Всегда остается необратимая пластическая ее часть. Это свидетельствует о длительных повреждениях в структуре материала.


Рис. 9. Релаксация - одно из самых неприятных свойств сталей

Для практики строительства значительно более важным оказывается другое неприятное свойство стали — релаксация. Оно проявляется в подвергающихся нагрузкам на растяжение и сжатие конструктивных элементах, концы которых закреплены неподвижно. На рис. 9 показан стальной прут, который растянут с неким известным напряжением, после чего зажат в неподвижных опорах. Хотя опоры остаются абсолютно неподвижными, напряжение в стали с течением времени начинает уменьшаться. В сущности, с релаксацией мы все часто сталкиваемся. Например, хорошо натянутая веревка для просушки выстиранного белья со временем начинает все сильнее провисать, пока не становится совершенно непригодной для использования. По той же причине туристские палатки надо время от времени заново натягивать, так как их веревки постепенно ослабевают.

Ползучесть и релаксация — это различные проявления одного и того же свойства материалов. Оно особенно ярко выражено у дерева и других материалов органического происхождения, но и в случае применения строительных конструкций неорганического происхождения не следует забывать об этих негативных явлениях. Релаксация имеет особенно важное значение для предварительно напряженных железобетонных конструкций, так как в этом случае непредвиденное ослабление напряженного элемента может резко снизить несущую способность конструкции. На первых этапах применения предварительно напряженного бетона, когда влияние релаксации еще не было достаточно хорошо изучено, целый ряд строительных аварий квалифицировался как необъяснимые случаи.

Итак, сталь… Самый жесткий материал с самыми устойчивыми во времени характеристиками. Она, несомненно, наиболее мощное оружие в руках инженера-конструктора. Благодаря ей можно перекрывать большие пролеты, чего не позволяет сделать никакой другой материал, можно создавать небоскребы и конструкции, надежные даже при самом тяжелом режиме эксплуатации. В силу ряда обстоятельств сталь также наиболее хорошо изученный строительный материал, самый однородный, самый упругий, который почти адекватен «стерильному» идеалу строительной механики. Поистине сталь незаменима во всех случаях строительной практики, когда демонстрируются огромные возможности конструкций при особенно сложных и ответственных условиях.

Сталь вошла в жизнь человека сравнительно поздно, причем не сразу. Сначала частичное применение нашел чугун. Вероятно, одной из первых цельнометаллических конструкций был Невянский завод на Урале (Россия), построенный в 1725 г. Первый чугунный мост был построен в 1779 г. на р. Северн в Англии. Но это были лишь особые случаи, так как металлургия была еще слабо развита, возможности чугуна весьма ограничены, а методы соединения отдельных элементов из этого принципиально нового для своего времени материала в целостную конструкцию не были разработаны. Строительство ждало нового материала, который коренным образом изменит сам облик строительства и поднимет его на качественно новую ступень. Строительство ждало стали.

В 1780 г. был создан метод получения пудлинговой (сварочной) стали, который в начале XIX в. был поставлен на индустриальную основу. В 20-х годах прошлого века решился вопрос соединения стальных элементов — появились заклепочные соединения. «Зеленая улица» для стали окончательно была открыта после создания вальцованного железа — проката.

Тогдашним конструкторам было еще неизвестно, что расход материала на выполнение конструкций зависит не только от нагрузок и усилий, но и от формы отдельных элементов. Должно было возникнуть и развиться промышленное производство стальных элементов с оптимальной формой поперечного сечения, обеспечивающей надлежащую несущую способность при минимальном расходе материала. Трудность состояла в том, что сталь нельзя, подобно бетону, отливать непосредственно на строительной площадке, а также обрабатывать простыми инструментами подобно дереву. Однажды отлитая и прокатанная на металлургическом заводе, она должна использоваться в максимально «фабричном» виде, так как ее дополнительная обработка — резание, изгибание, соединение — весьма трудоемкое дело и требует применения специальной техники. Разумеется, когда подобная обработка неизбежна, она производится, но задача в том, чтобы свести ее к минимуму. Ряд наиболее распространенных в практике профилей наиболее целесообразно получать, когда «железо еще горячо», т.е: на прокатных станах металлургических заводов, вместо того чтобы собирать их из отдельных частей в мастерских или в цехах монтажа конструкций.

Эти несложные соображения были реализованы еще в конце ХVШ в., когда в Англии возникла идея промышленного производства профилированной стали. К 1819—1820 гг. там уже выпускались угловые, Т-образные и Z-образные элементы различной длины. Одно из наиболее удачных сечений — двутавровое — начали вьь пускать большими сериями во Франции в 1845 г. Постепенно этот процесс был охвачен государственными стандартами, профили приобрели более оптимальные размеры, и наконец, возникло современное производство прокатной стали. Можно сказать со всей определенностью, что нынешние конструктивные формы из этого замечательного материала обязаны своим существованием богатой гамме всевозможных прокатных профилей, которая позволяет создавать самые разнообразные их сочетания в соответствии с замыслом конструктора и требованиями конкретных условий.

Итак, изделия современной металлургической промышленности, которые попадают в руки строителя-конструктора, — это разнообразные виды горячекатаной стали (листовая сталь толщиной от 4 до 60 мм), а также стальные профили, получаемые холодным способом. Путем штамповки, изгибания или холодной прокатки из тонких стальных листов (1—4 мм) изготовляются тонкостенные профили сложного сечения с высокими экономическими и статическими показателями, которые находят широкое применение в конструкциях облегченного типа. На повестку дня была поставлена проблема соединения отдельных частей и элементов конструкций. По несущей способности, деформируемости и долговечности соединения непременно должны соответствовать классу материала, а в нашем конкретном случае даже быть классом выше.

Отсутствие подходящих соединений было одним из главных препятствий на пути развития чугунных, а позднее и стальных конструкций. Сначала появились болтовые соединения — метод, известный с древнейших времен. Сразу необходимо отметить, что современный вариант болтовых соединений следует считать анахронизмом только как идею, но не как техническое решение. Подобный вид соединений занимает важное место в строительстве не только наших дней, но и будет играть большую роль в будущем. Такое же положение и с заклепочными соединениями, которые, как уже было сказано, появились в 20-годах прошлого века. Но, несомненно в наши дни наиболее важный метод соединения — сварка. Ее рождение можно датировать 80-ми годами XIX в., когда русские инженеры Славянов и Бернардос изобрели электродуговой способ соединения стали. Однако сварка стала достаточно широко применяться в строительстве только в 20-е годы нынешнего столетия, а в настоящее время достигла такого качества, многообразия и чистоты, что заслуженно была возведена в ранг фаворита. А если мы попытаемся заглянуть в будущее, то, вероятно, увидим много поистине нового и интересного — исключительно простые и надежные соединения стальных деталей, выполняемые путем склеивания синтетическими материалами. Исследования в этом направлении, и, надо сказать, довольно успешные, уже проводятся.

Ежегодно в мире производится 500 млн. т стали. Около половины этого внушительного количества приходится на долю низкоуглеродистых, мягких сталей. К ним предъявляется целый ряд сложных требований, которые даже нельзя сравнивать с первым трогательным нормативом, который был введен в далеком 1886 году и касался только величины временного сопротивления и деформаций. Оказалось, что очень важное значение имеют химический состав материала, методы плавления, литья и горячей обработки. Около 62% производимой в мире стали получается мартеновским методом, который был предложен еще в 1867 г. Существуют две разновидности мартеновской стали — кипящая и успокоенная. Кипящая мартеновская сталь — более дешевая, так как сразу после кипения ее выливают в специальные ковши, чем и завершается процесс ее получения. Но и качество ее ниже: в ней остается много растворенных газов, в том числе и таких вредных, как азот. В определенный момент, например при сварке, это может сыграть негативную роль. Поэтому для ответственных сварных конструкций применяется успокоенная мартеновская сталь. Что же касается конверторной стали (в 1855 г. был предложен бессемеровский, а в 1878 г. — томасовский метод ее получения, но ее сомнительная чистота еще ниже, чем у кипящей мартеновской стали, что существенно ограничивает возможности ее применения. Не случайно во всем мире при строительстве металлургических заводов в основном все же возводятся мартеновские печи.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*