KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел

Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Антонио Лизана, "Если бы числа могли говорить. Гаусс. Теория чисел" бесплатно, без регистрации.
Перейти на страницу:

Проведя вычисления для получения регрессионной прямой, получаем, что Y= 0,808Х - 68,912, где Υ — вес, а Х — рост. На графике на следующей странице представлены реальные точки и регрессионная прямая, вычисленная методом наименьших квадратов. Прямая позволяет нам спрогнозировать средний вес человека с ростом 179 сантиметров: Υ = 0,808 · 179-68,921 = 75,71.

Чем сложнее функция ƒ, тем сложнее вычисления, но тем большую точность мы получаем в итоге.

Значительная часть статистики — это формулирование предположений, то есть извлечение выводов о параметрах аудитории на основе репрезентативной выборки. Эти выводы получены с помощью функции выборки, называемой статистической оценкой, которая предполагает оценку поведения целевой аудитории. Для статистического предположения принципиальную роль играет теорема Гаусса — Маркова. В ней утверждается, что при выполнении определенных гипотез статистическая оценка, полученная методом наименьших квадратов, является оптимальной.

Представление точек и регрессионной прямой, вычисленной методом наименьших квадратов.


«ТЕОРИЯ ДВИЖЕНИЯ НЕБЕСНЫХ ТЕЛ»

Как мы уже сказали, в 1807 году Гаусс вернулся в Гёттинген в должности директора астрономической обсерватории. Хотя он интересовался астрономией всю жизнь и это даже уменьшило вклад ученого в традиционную математику, именно на первые годы в Гёттингене приходятся его наибольшие усилия, посвященные доработке имеющихся трудов по астрономии и созданию новых. В 1809 году Гаусс опубликовал свою самую важную астрономическую работу — «Теория движения небесных тел». В ней содержатся полученные им заключения, но, как и ранее, не всегда приведены методы их получения.

Книга была опубликована на латыни, хотя первый вариант Гаусс написал на немецком. Издатель счел, что труд в латинском варианте получит большее распространение. Главная тема работы — определение эллиптических и гиперболических орбит планет и комет при использовании минимального числа наблюдений без дополнительных предположений. В предисловии Гаусс напоминает о вычислении орбиты Цереры, которое принесло ему такую славу. Книга носит явный дидактический характер и включает многочисленные примеры применения. Она разделена на две части: в первой содержится теоретический материал, а во второй — решения общей проблемы. Это первое строго сформулированное применение законов Кеплера для вычисления орбит небесных тел. До открытий Гаусса, таких как метод наименьших квадратов, астрономы пользовались методами, которые от случая к случаю варьировались, и не искали общего правила. Основной вклад Гаусса состоит в сочетании теоретических знаний, необыкновенной легкости алгебраических вычислений и его практического опыта в астрономии. В отличие от своих предшественников (включая Исаака Ньютона, который решал подобные проблемы с помощью геометрического приближения), Гаусс не предполагает знание формы орбиты наблюдаемого объекта. Это затрудняет вычисления, но позволяет подойти к проблеме, не зная, является ли изучаемый объект планетой, кометой или астероидом, что нелегко определить при небольшом объеме наблюдений.


ГАУСС И ЕГО КОЛОКОЛ

Гаусс не был открывателем кривой, носящей его имя. Нормальное распределение, или кривая Гаусса, также известная как Гауссов колокол в статистике, была описана Абрахамом де Муавром (1667-1754) в статье 1733 года, за много лет до рождения героя нашей книги. Функция плотности нормального распределения (она описывает вероятность нахождения значения переменной в определенном множестве), которая естественным образом появляется при изучении поведения реальных явлений, имеет вид:

где μ и σ² — это среднее значение и дисперсия распределения. Их представление показано на следующем рисунке при μ = 0.

Имя Гаусса фигурирует в названии этого распределения по двум причинам: с одной стороны, ученый широко использовал нормальное распределение при изучении ошибок экспериментов, когда анализировал астрономические данные, а с другой стороны, существует тип функций, называемых гауссовыми (в честь Гаусса), среди которых нормальное распределение — частный случай при

В нормальном распределении большинство значений переменной группируется вокруг центрального значения, поэтому в нем график достигает наибольшей высоты. Чем больше мы отдаляемся от него, тем меньше вероятность нахождения данных, поэтому график убывает при отдалении от значения средней величины.


Четыре раздела первой части книги описывают движения тела вокруг Солнца. Раздел I содержит многие необходимые определения, такие как радиус или эксцентриситет, и тригонометрические формулы для описания положения тела в заданной точке орбиты. Также в него включены практические советы о методах экстраполяции числовых таблиц и приближения парабол к эллипсам и гиперболам. Раздел II посвящен определению положения небесного тела как функции с тремя координатами. Гаусс начал с определения семи параметров, которые определяют движение небесного тела: средняя долгота, среднее движение, наибольшая полуось, эксцентриситет, долгота восходящего узла, наклонение орбиты и масса. Затем он описал отношения между этими элементами и объяснил критерии для определения различных конических сечений. И в завершение раздела он указал дифференциальные уравнения движения небесного тела, приведя несколько практических примеров.

В разделе III ученый затронул проблему вычисления орбиты на основе нескольких наблюдений и нахождения всех параметров, описывающих движение тела, с помощью математических отношений. В последнем разделе он занялся случаем различных наблюдений, которые сделаны в той же плоскости, что и Солнце (как движение Земли, например), для которых он вывел их тригонометрические отношения. Этот короткий раздел заканчивается формулировкой уравнения для эллиптических орбит.


Принцип состоит в том, что сумма квадратов разности между наблюдаемым и вычисленными значениями должна быть минимальной.

Гаусс, определение метода наименьших квадратов


Во второй части книги Гаусс перешел к основной проблеме — определению орбиты небесного тела на основе наблюдений. Эта проблема решается в два этапа: на первом вычисляется приблизительное решение на основе трех-четырех наблюдений, а на втором оно улучшается с помощью оставшихся данных. Части 1 и 2 этого раздела посвящены первому этапу, а части 3 и 4 — второму.

Как мы упомянули, элементов движения, которые необходимо вычислить для определения орбиты, семь. В разделе 1 второй части книги Гаусс объясняет, как вычислить шесть из них, пользуясь тремя наблюдениями; седьмой (масса) должен быть определен независимо. Учитывая, что каждое наблюдение предоставляет два параметра (долготу и широту), трех наблюдений достаточно для вычислений, если только наблюдаемая орбита не находится в эклиптике или очень близко от нее.

Говоря об эклиптике, мы имеем в виду плоскость, в которой Земля движется вокруг Солнца, описывая эллипс. Для этого случая, который является предметом раздела II второй части, необходимо еще четыре независимых наблюдения. Гаусс рассмотрел случай четырех независимых наблюдений, из которых только два являются завершенными. Методологически это не ново относительно увиденного ранее, но важно, если упомянутая орбита близка к эклиптике Земли. В этом случае даже маленькие погрешности в наблюдениях могут привести к ошибочным вычислениям, если работать только с четырьмя упомянутыми наблюдениями.

Последние два раздела книги посвящены способам улучшения методов приближенного вычисления орбит, рассмотренных в двух первых разделах. В разделе III Гаусс впервые опубликовал метод наименьших квадратов как наиболее эффективный для достижения этой цели. Как мы уже видели, он был успешно использован для вычисления орбиты Цереры: Гаусс при этом опередил Лежандра в открытии метода, но не в его опубликовании. В довольно коротком разделе IV ученый сделал несколько замечаний о нарушениях эллиптических орбит, вызванных влиянием планет большого размера, что позволило вычислить массу Юпитера на основе орбиты Цереры, не вдаваясь в чрезмерные подробности. Книга заканчивается рядом очень длинных таблиц, которые проясняют отношения между различными параметрами, определяющими орбиту.

Можно утверждать, что «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям» была самым важным астрономическим текстом в течение нескольких десятилетий после публикации. Метод наименьших квадратов стал основным инструментом: сначала это была только техника, которая затем превратилась в один из столпов натуральной философии Гаусса, и ученый значительно расширил ее применение, сделав необходимым инструментом во многих других областях математики.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*