Лилия Алексеева - Небесные сполохи и земные заботы
По его словам, в отношении специалистов к гипотезе существования радиозеркала, ионосферы, «коренной перелом наступил тогда, когда стало известно, что коротковолновики–радиолюбители бьют все рекорды дальней связи… Уже в 1922 году радиолюбители установили уверенную двустороннюю связь между Европой и Америкой. Специалисты были потрясены. Самодельные маломощные передатчики оказались более дальнодействующими, чем длинноволновые правительственные радиостанции, обладавшие большой мощностью и крупногабаритными антеннами, мачтами и башнями».
Вскоре служебные радиостанции стали регулярно применять короткие волны для дальней связи. А в 1925 году ионосфера, «волшебное зеркало планеты», была открыта экспериментально. Группа английских радиофизиков в одной из лабораторий Кембриджского университета сконструировала приемные антенны, которые не только принимали сигналы удаленных радиостанций, но и можно было с их помощью определить направление прихода радиоволн. Передатчик был расположен на севере Англии, а приемник — на юге. Расстояние между ними было около 400 километров. Когда посмотрели, откуда приходит к приемнику радиосигнал, то оказалось, волна принимается не с севера, а сверху! 1925 год стал «годом рождения» ионосферы.
Ионосфера — это промежуточный слой между плазмой магнитосферы и нейтральной атмосферой Земли, в котором свободные заряженные частицы, обеспечивающие перенос заряда, электрический ток, перемешаны с нейтральными. Советский специалист в области распространения радиоволн А. Н. Щукин писал: «Можно сказать без преувеличения, что не будь отражения и преломления радиоволн в верхних слоях атмосферы, роль радио как средства связи сократилась бы на 90–95 процентов». Так что нашим привычным радио мы обязаны космосу.
Знать детально состояние «радиозеркальной оболочки» Земли было бы очень полезно. Если бы умели уверенно расшифровывать ее свойства, мы могли бы полнее эти свойства использовать. Замечено, например, что радиоволны после отражения от ионосферы и затем от какого–либо предмета могут вернуться по своему пути обратно, к тому месту, откуда они вышли. Значит, в принципе можно видеть то, что делается за горизонтом — на расстояниях до нескольких тысяч километров. Для сравнения заметим, что обычный радиолокатор, работающий в режиме «прямого зрения», обнаруживает самолет, летящий на высоте 10 тысяч метров, с расстояния до 400 километров. При высоте полета 100 метров еще ближе — с расстояния 50 километров.
Но задача точного описания отражающего действия ионосферы далеко не простая. Существуют целые институты, в названия которых вынесены слова «ионосфера и распространение радиоволн». Приложили усилия к исследованиям этой проблемы физики А. Зоммерфельд и В. А. Фок, внес свой вклад в нее, еще будучи аспирантом МГУ, и Р. В. Хохлов.
Для нас ионосфера — продолжение космоса. Создается она действием космических факторов на верхние слои земной атмосферы. Уже не раз мы говорили, что волны взаимодействуют лишь с теми объектами, размеры которых сравнимы с длиной волны или превышают ее. Коротковолновое — ультрафиолетовое и рентгеновское — излучение Солнца сильно действует на нейтральные частицы атмосферы, приводя к возникновению всякого рода обломков: молекулы разбиваются на атомы, появляются свободные электроны и разные ионы. К тому же частицы, усваивая «лишнюю» энергию, становятся возбужденными, способными испускать порции (кванты) электромагнитных волн, светиться. Нам нет надобности обсуждать в подробностях эти квантовомеханические процессы, благодаря которым ионосфера запасает энергию. Пусть лишь прозвучит «за кадром» старая песенка московских студентов–физиков:
А энергия лишь квантом излучается,
И лишь квантами обратно поглощается.
И, с одной орбиты сбитый,
На другую вмиг орбиту
Электрон всегда скачком перемещается!
В ней все правильно.
Когда обломки, встречаясь между собой, восстанавливают свою целостность или когда возбужденная частица превращается в невозбужденную, запасенная ранее энергия излучается в виде световых квантов. Поэтому верхние слои атмосферы, принимающие на себя основной удар коротковолнового излучения Солнца, светятся по–особому, не так, как ее нижние слои.
Днем это собственное свечение верхней атмосферы забивается ярким солнечным светом, рассеянным нейтральными частицами атмосферы. Но запасенная в ионосфере энергия освобождается и ночью. Поэтому в ясную безлунную ночь небосвод, если наблюдать его с Земли, имеет примерно в два раза большую яркость, чем можно ожидать при учете лишь одного света звезд.
Это слабое свечение ночного неба — прямая родня полярному сиянию, в обоих случаях светится одна и та же среда. Только энергия для свечения черпается из разных источников: это либо запасенная ионосферой энергия электромагнитного излучения Солнца, либо (в случае полярных сияний) энергия частиц, приходящих из магнитосферы и бомбардирующих верхние слои атмосферы. Впрочем, высыпающиеся из магнитосферы частицы вносят свой вклад и в общее свечение ночного неба, только высыпания слабые и свечение слабое. Частицы верхних слоев атмосферы получают энергию и при сгорании попавших в нее мелких метеоритов. Кончается тем же: возвращаясь в нормальное состояние, частицы испускают кванты света различной окраски — различных длин волн.
Этим свечением верхние слои атмосферы как бы сообщают о себе, о своем химическом составе, о возбудителях свечения и о многом другом. Так, почти 100 лет назад физики обнаружили в спектре ночного свечения неба яркую зеленую линию. В земных лабораториях такого не наблюдалось. Предположили, что в атмосфере Земли имеется неизвестный газ, дали ему название «геокороний». Но потом оказалось, что эту линию излучают атомы кислорода, не связанные в молекулы. Этот атомарный кислород существует лишь на высотах 100 километров и выше, у нас же, на дне «воздушного океана», атомы кислорода всегда объединены в молекулы газа кислорода по двое.
Воздух ниже высоты 100 километров хорошо перемешан и по составу практически не отличается от приземного (мы отвлекаемся от различия примесей, которое позволяет говорить о слое озона, обсуждать, где находятся пары воды и прочее), только плотность его быстро спадает по мере удаления от Земли. На высоте 100 километров по понятиям земной физики — высокий вакуум, но по составу — это обычный воздух. Выше меняется и состав.
Эта высота, 100 километров, примечательна во многих отношениях. Мы видели, что примерно здесь находится нижняя граница полярных сияний. Свечение ночного неба говорит о том, что свободные электрические заряды в верхних слоях атмосферы есть и ночью. И действительно, особенности распространения радиоволн показывают, что отражающее электропроводное радиозеркало существует круглосуточно, оно окружает нашу планету со всех сторон. Причем электрическая проводимость атмосферы нарастает с высотой весьма показательно: она мала между поверхностью Земли и той же высотой — примерно 100 километров, выше резко увеличивается (днем она, естественно, намного больше, чем ночью, потому что в ионосфере больше «обломков», а значит, и свободных зарядов).
Можно сказать, что на этой 100‑километровой высоте проходит граница земного и космического. Обращенная к Земле часть космоса, ионосфера, — последняя важная Для нас деталь устройства космического телевизора, который показывает нам полярные сияния.
Все земные электронные или просто электротехнические устройства выполняют свои функции потому, что Детали их имеют неодинаковое сопротивление: где надо — поставлен проводник, где надо — изолятор. Проводящий слой, ионосфера, примыкает к магнитосфере и переходит в нее. Они обмениваются между собой электрическими зарядами (токами). Но физические свойства у них различны. Плазма магнитосферы разрежена и состоит в основном из свободных заряженных частиц. Плазма ионосферы гуще, плотность свободных носителей зарядов здесь намного больше, но эти свободные заряды представляют собой малую примесь к нейтральным частицам, с которыми им приходится сталкиваться при движении. Поэтому ионосфера и магнитосфера отличаются и электрическим сопротивлением. Не вдаваясь в подробности, проинформируем читателя, как работает эта «небесная электротехника».
Электропроводящие свойства наших проводников таковы, что при обмене зарядами между ионосферой и магнитосферой токи «предпочитают» течь вдоль силовых линий магнитного поля. В нижней ионосфере в отличие от верхней заряды перетекают также и поперек силовых линий, причем делают это тем легче, чем больше в ионосфере свободных заряженных частиц. Иначе говоря, с увеличением числа носителей зарядов в ионосфере падает ее сопротивление поперечному (по отношению к магнитным силовым линиям) току. С этим связан интересный эффект, когда космические проводники, ионосфера и магнитосфера, как бы сами себя выводят на режим короткого замыкания.