Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий
Добыча молибденовых руд началась лишь в 80-х годах прошлого века. До начала первой мировой войны в промышленных масштабах их добывали лишь две страны — Австралия и Норвегия. В годы войны потребность в молибдене — для получения высококачественной стали — резко возросла, мировое производство его достигло 800 т в год. К странам, добывающим молибденовую руду, прибавились США и Канада. В дальнейшем Соединенные Штаты стали почти монопольным производителем этого металла в капиталистическом мире.
Характерно, что производство молибдена в капиталистических странах росло скачкообразно: резкие пики приходятся на годы больших войн. Так, в 1943 г. добывали больше молибдена, чем в 1952: 30 и 22 тыс. т соответственно.
В 1975 г. в капиталистических странах произведено 72 тыс. т молибдена, в 1980 — около 94 тыс. т.
СОВЕТСКИЙ МОЛИБДЕН. В России молибден начали добывать в начале XX в. в Забайкалье на Чикойском руднике, попавшем в концессию иностранной фирме. На месте руду не перерабатывали, а отправляли в Германию, а оттуда уже везли назад металл. С началом первой мировой войны импорт молибдена, естественно, прекратился; пришлось организовывать собственное производство. Добыча молибденовой руды на Чикойском руднике выросла, но ее все равно не хватало, и через Владивосток Россия начала ввозить австралийскую руду. Вскоре Чикойский рудник был закрыт, и добыча молибдена в Забайкалье прекратилась до 1926 г.
В 1921 г. при химическом отделе BCHX был организован отдел новых производств во главе с В. И. Глебовой. По ее инициативе создали «Бюро редких элементов», которое занялось прежде всего организацией производства молибдена и вольфрама из отечественных руд. Исследовательские работы возглавили профессор И. А. Каблуков и молодой химик Владимир Иванович Спицын. Вольфрам, абсолютно необходимый для производства электрических ламп, сумели получить раньше, чем молибден. Первое в стране производство молибденовой проволоки началось в 1928 г. В 1931 г. Московский электрозавод выпустил уже 70 млн. м вольфрамовой и 20 млн. м молибденовой проволоки, Добыча молибденовых руд в Забайкалье возобновилась в 20-е годы. Позже советские геологи обнаружили много молибденовых месторождений в Сибири, Казахстане, на Кавказе и в других районах страны.
С ЧЕГО НАЧАЛАСЬ ПОРОШКОВАЯ МЕТАЛЛУРГИЯ. Даже после того как молибден стал играть важную роль в сталелитейной промышленности, в чистом виде он не находил практического применения. Ведь получали не монолитный металл, а порошок, переплавить который не могли: температура плавления молибдена 2620°C — и обычная футеровка печей не выдерживала…
Первую молибденовую проволоку получили лишь в 1907 г., применив «обходный маневр». Порошкообразный молибден смешивали с клейким органическим веществом, например с сахаром. Полученную массу продавливали через отверстия матрицы. Получалась клейкая нить. Поместив эту нить в атмосферу водорода (чтобы при разогреве молибден не окислился), пропускали через нить электрический ток. Нить, естественно, разогревалась, органика выгорала, а металл проплавлялся, осаждаясь на проволоке. А еще через три года Джеймс Куллидж взял патент на получение тугоплавких металлов методом металлокерамики, или порошковой металлургии. Металлический порошок смешивают с раствором глицерина в спирте. Из этой массы прессуют штабики, которые потом спекают. В случае молибдена этот процесс длится 2–3 часа при 1100–1200°C. Затем через полученные брикеты пропускают постоянный ток низкого напряжения. Они разогреваются и свариваются — получается компактная монолитная масса молибдена высокой чистоты. Этот способ производства тугоплавких материалов получил широчайшее распространение. Им широко пользуются и в наши дни.
МОЛИБДЕН И ЖИЗНЬ. Роль молибдена в жизни (имея в виду только биологические аспекты) двоякая. Он считается необходимым микроэлементом. Его обнаружили в зеленой массе растений (около 1 мг на килограмм сухого вещества). Много молибдена оказалось в горохе и бобах. Нашли его и в различных животных организмах. Тем не менее выяснить, какова роль молибдена в обмене веществ и вообще в жизни, долгое время не удавалось.
Началось с того, что в одном из опытных хозяйств Новой Зеландии заметили, будто добавление в почву незначительных количеств молибденовых солей примерно на 30% увеличивало урожай люцерны и клевера. Вскоре выяснили, что микроколичества молибдена увеличивают активность клубеньковых бактерий и благодаря этому растения лучше усваивают азот. Особенно эффективен молибден на кислых почвах. На красноземах и буроземах, в которых много железа, действие молибдена, напротив, минимально. Тем не менее в некоторых странах увлечение молибденовыми удобрениями приняло массовый характер, и лишь после этого открылась оборотная сторона медали. Избыток молибдена оказался вреден («все излишества от лукавого») не только для растений, но и для животных и даже для человека. Более того, оказалось, что именно молибден — виновник подагры — болезни, известной много столетий. Но почему молибден в одних случаях полезен, а в других опасен, удалось выяснить лишь в последние десятилетия.
Было установлено, что молибден входит в состав важного фермента ксантиноксидазы. Если в пище мало молибдена, то фермент этот образуется в недостаточном количестве, и организм болезненно реагирует на его нехватку.
Если же молибдена в пище больше, чем нужно, то обмен веществ тоже нарушается. Ксантиноксидаза ускоряет азотистый обмен в организме, в частности пуриповый обмен. В результате распада пурипов образуется мочевая кислота. Если этой кислоты слишком много, то почки не успевают выводить ее из организма; тогда в суставах и мышечных сухожилиях скапливаются растворенные в этой кислоте соли. Суставы начинают болеть; начинается подагра…
ЧЕТЫРЕ СУЛЬФИДА. С серой молибден образует не только всем известный графитоподобный дисульфид MoS2, но и еще три соединения, получаемые лишь искусственно. Полуторный сульфид Mo2S3 образуется при быстром нагревании дисульфида до 1700–1800°C. Как и дисульфид, он серого цвета, но с игольчатыми кристаллами. Совсем иначе выглядят пента- (Mo2S5) и трисульфид (MoS3). Это аморфные вещества темно-коричневого цвета. Кроме MOS2, практически применяют лишь MoS3, да и то редко. Он используется в аналитической химии и в производстве молибдена — для извлечения последнего из бедных растворов и отделения его от вольфрама.
ТЕХНЕЦИЙ
В 1936 г. еще совсем молодой итальянский физик Эмилио Сегре женился и уехал из Рима. Он держал путь в Палермо, древнюю столицу Сицилии, где в местном университете ему были предоставлены кафедра и должность декана физического факультета.
В Риме Сегре работал в лаборатории Энрико Ферми, участвовал в знаменитых нейтронных опытах, в ходе которых впервые в мире уран обстреливали потоком нейтронов.
Итальянские физики считали, что таким путем можно будет получить новые химические элементы, более тяжелые, чем уран.
Кусок облученного молибдена
Естественно, что, отправляясь в Палермо, Сегре надеялся продолжить работы, связанные с радиоактивностью и поиском новых элементов, хотя оснований для таких надежд было немного. Во всех странах в те годы радиоактивные материалы представляли большую ценность, а итальянские лаборатории были крайне бедны — Муссолини сразу вспоминал о дефиците бюджета, когда речь заходила о науке. Достаточно сказать, что на упоминавшиеся уже нейтронные опыты Ферми было отпущено всего 100 долларов…
Но безвыходные положения бывают крайне редко, и Сегре нашел выход. В конце того же 1936 г. он отправился в Америку, в Калифорнийский университет, и смог привезти оттуда кусок облученного в циклотроне молибдена.
Здесь мы должны сделать небольшое, чисто физическое отступление, иначе будет непонятно, почему этот кусок молибдена был так нужен Сегре. Из молибдена был сделан «зуб» отклоняющей пластины первого в мире, маломощного по нынешним масштабам, циклотрона. Циклотрон — это машина, ускоряющая движение заряженных частиц, например дейтронов — ядер тяжелого водорода, дейтерия. Частицы разгоняются высокочастотным электрическим полем по спирали и с каждым витком приобретают все большую энергию. Поток таких частиц обрушивается на мишень, сделанную из вещества, которое нужно облучить.
Профессор Эмилио Сегре (р. 1905) — первооткрыватель технеция. Снимок сделай осенью 1060 г. а Ленинграде на X юбилейном Менделеевском съезде, участником которого был Сегре
Всем, кто когда-либо работал на циклотроне, хорошо известно, как трудно бывает вести эксперимент, если мишень установлена непосредственно в вакуумной камере циклотрона. Значительно удобнее работать на выведенном пучке, в специальной камере, где можно разместить всю необходимую аппаратуру. Но вытащить пучок из циклотрона далеко не просто. Делается это с помощью специальной отклоняющей пластины, на которую подано высокое напряжение. Пластина устанавливается на пути разогнанного уже пучка частиц и отклоняет его в нужном направлении. Расчет наилучшей конфигурации пластины — целая наука. Но несмотря на то что пластины для циклотронов изготавливают и устанавливают с максимальной точностью, ее лобовая часть, или «зуб», поглощает примерно половину ускоренных частиц. Естественно, «зуб» разогревается от ударов, потому его и сейчас делают из тугоплавкого молибдена.