KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий

Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Коллектив авторов, "Популярная библиотека химических элементов. Книга первая. Водород — палладий" бесплатно, без регистрации.
Перейти на страницу:

Иначе влияет цирконий на молибден. Добавка 5% циркония удваивает твердость этого тугоплавкого, но довольно мягкого металла.

Есть и другие области применения металлического циркония. Высокая коррозийная стойкость и относительная тугоплавкость позволили использовать его во многих отраслях промышленности. Фильеры для производства искусственного волокна, детали горячей арматуры, лабораторное и медицинское оборудование, катализаторы — вот далеко не полный перечень изделий из металлического циркония.

Однако не металлургия и не машиностроение стали основными потребителями этого металла. Огромные количества циркония потребовались ядерной энергетике.


Проблема циркония «реакторной чистоты»

В ядерную технику цирконий пришел не сразу. Для того чтобы стать полезным в этой отрасли, металл должен обладать определенным комплексом свойств. (Особенно, если он претендует на роль конструкционного материала при строительстве реакторов.) Главное из этих свойств — малое сечение захвата тепловых нейтронов. В принципе эту характеристику можно определить как способность материала задерживать, поглощать нейтроны и тем самым препятствовать распространению цепной реакции.

Величина сечения захвата нейтронов измеряется в барнах. Чем больше эта величина, тем больше нейтронов поглощает материал и тем сильнее препятствует развитию цепной реакции. Естественно, что для реакционной зоны реакторов выбираются материалы с минимальным сечением захвата.

У чистого металлического циркония эта величина равна 0,18 барна. Многие более дешевые металлы имеют сечение захвата такого же порядка: у олова, например, оно равно 0,65 барна, у алюминия — 0,22 барна, а у магния — всего 0,06 барна. Но и олово, и магний, и алюминий легкоплавки и нежаропрочны; цирконий же плавится лишь при 1860°C.

Казалось, единственное ограничение — довольно высокая цена элемента № 40 (хотя для этой отрасли денег жалеть не приходится), но возникло другое осложнение. В земной коре цирконию всегда сопутствует гафний.

В циркониевых рудах, например, его содержание обычно составляет от 0,5 до 2,0%. Химический аналог циркония (в менделеевской таблице гафний стоит непосредственно под цирконием) захватывает тепловые нейтроны в 500 раз интенсивнее циркония. Даже незначительные примеси гафния сильно сказываются на ходе реакции. Например. 1,5%-ная примесь гафния в 20 раз повышает сечение захвата циркония.

Перед техникой встала проблема — полностью разделить цирконий и гафний. Если индивидуальные свойства обоих металлов весьма привлекательны, то их совместное присутствие делает материал абсолютно непригодным для атомной техники.

Проблема разделения гафния и циркония оказалась очень сложной — химические свойства их почти одинаковы из-за чрезвычайного сходства в строении атомов. Для их разделения применяют сложную многоступенчатую очистку: ионный обмен, многократное осаждение, экстракцию.

Все эти операции значительно удорожают цирконий, а он и без того дорог: пластичный металл (99,7% Zr) во много раз дороже концентрата. Проблема экономичного разделения циркония и гафния еще не до конца решена практически.

И все-таки цирконий стал «атомным» металлом.

Об этом, в частности, свидетельствуют такие факты. На первой американской атомной подводной лодке «Наутилус» был установлен реактор из циркония. Позже выяснилось, что выгоднее делать из циркония оболочки топливных элементов, а не стационарные детали активной зоны реактора.

Тем не менее производство этого металла увеличивается из года в год, и темпы этого роста необыкновенно высоки. Достаточно сказать, что за десятилетие, с 1949 по 1959 г., мировое производство циркония выросло в 100 раз! По американским данным, в 1975 г. мировое производство циркония составило около 3000 т. А к 1985 г., по американским же прогнозам, только атомной энергетике потребуется 5000 т циркония. Еще 2000 т этого металла понадобится военным ведомствам, а тысячу тонн израсходуют в химическом машиностроении для придания различным металлам и сплавам повышенной коррозионной стойкости. Еще несколько сот тонн циркония нужны будут для производства фотографических ламп-вспышек высочайшей надежности… Рост производства элемента № 40 продолжается.


Цирконий, воздух и вода

В предыдущих главах почти ничего не рассказано о химических свойствах элемента № 40. Главная причина этого — нежелание повторять многие статьи и монографии об элементах-металлах. Цирконий — типичнейший металл, характерный представитель своей группы (и подгруппы) и своего периода. Ему свойственна довольно высокая химическая активность, которая существует, однако, в скрытой форме.

О причинах этой скрытности и отношении циркония к воде и компонентам воздуха стоит рассказать подробнее.

Компактный металлический цирконий внешне очень похож на сталь. Он ничем не проявляет своей химической активности и в обычных условиях по отношению к атмосферным газам ведет себя исключительно инертно. Кажущаяся химическая пассивность циркония объясняется довольно традиционно: на его поверхности всегда есть невидимая окисная пленка, предохраняющая металл от дальнейшего окисления. Чтобы полностью окислить цирконий, надо повысить температуру до 700°C. Только тогда окисная пленка частично разрушится, а частично растворится в металле.

Итак, 700°C — тот температурный предел, за которым кончается химическая стойкость циркония. К сожалению, и эта цифра слишком оптимистична. Уже при 300ºC цирконий начинает более активно взаимодействовать с кислородом и другими компонентами атмосферы: водяными парами (образуя двуокись и гидрид), с углекислым газом (образуя карбид и двуокись), с азотом (продукт реакции — нитрид циркония). Но при температурах ниже 300°C окисная пленка — надежный щит, гарантирующий высокую химическую стойкость циркония.

Иначе, чем компактный металлический цирконий, ведут себя на воздухе его порошок и стружка. Это пирофорные вещества, которые легко самовозгораются на воздухе даже при комнатной температуре. При этом выделяется много тепла. Циркониевая пыль в смеси с воздухом способна даже взрываться.

Интересно отношение циркония к воде. Явные признаки взаимодействия металла с водой долгое время не видны. Но на поверхности смоченного водой циркония происходит не совсем обычный для металлов процесс. Как известно, многие металлы под действием воды подвергаются гальванической коррозии, которая заключается в переходе их катионов в воду. Цирконий же и под действием воды окисляется и покрывается защитной пленкой, которая в воде не растворяется и предотвращает дальнейшее окисление металла.

Перевести ионы циркония в воду проще всего растворением некоторых его солей. Химическое поведение четырехвалентного иона циркония в водных растворах очень сложно. Оно зависит от множества химических факторов и процессов, протекающих в водных растворах.

Существование иона Zr4+ «в чистом виде» маловероятно. Долгое время считали, что в водных растворах цирконий существует в виде ионов цирконила ZrO2+. Более поздние исследования показали, что в действительности в растворах кроме цирконил-ионов присутствует большое число различных комплексных — гидратированных и гидролизованных — ионов циркония. Их общая сокращенная формула

[Zrp(H2O)n (ОН)-m] (4p-m)+.

Такое сложное поведение циркония в растворе объясняется большой химической активностью этого элемента. Препаративный цирконий (очищенный от ZrO2) вступает во множество реакций, образуя простые и сложные соединения. «Секрет» повышенной химической активности циркония кроется в строении его электронных оболочек. Атомы циркония построены таким образом, что им свойственно стремление присоединить к себе как можно больше других ионов; если таких ионов в растворе недостаточно, то ионы циркония соединяются между собой и происходит полимеризация. При этом химическая активность циркония утрачивается; реакционная способность полимеризованных ионов циркония намного ниже, чем неполимеризованных. При полимеризации уменьшается и активность раствора в целом.

Такова в общих чертах «визитная карточка» одного из важных металлов нашего времени — элемента № 40, циркония.


«НЕСОВЕРШЕННЫЕ АЛМАЗЫ». В средние века были хорошо известны ювелирные украшения из так называемых несовершенных алмазов. Несовершенство их заключалось в меньшей, чем у обычного алмаза, твердости и несколько худшей игре цветов после огранки. Было у них и другое название — матарские (по месту добычи — Матаре, району острова Шри Ланка). Средневековые ювелиры не знали, что используемый ими драгоценный минерал — это монокристаллы циркона, основного минерала циркония. Циркон бывает самой различной окраски — от бесцветного до кроваво-красного. Красный драгоценный циркон ювелиры называют гиацинтом. Гиацинты известны очень давно. По библейскому преданию, древние первосвященники носили на груди 12 драгоценных камней и среди них гиацинт.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*