KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Медицина » К.ПРИБРАМ - ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии

К.ПРИБРАМ - ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн К.ПРИБРАМ, "ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии" бесплатно, без регистрации.
Перейти на страницу:

Рис. II-11. Схема возможных конфигураций молекулярных структур, которые может принимать молекула нуклеиновой кислоты (полимер poly-L-lysine hydrochlorid) (Blout, 1967).


С помощью структурных изменений можно хорошо объяснить временную память, связанную с такими образами, которые характерны для лиц с «фотографической» (или «эйдетической») памятью. Один такой эйдетически одаренный студент недавно был обнаружен в Гарварде. В результате экспериментальной проверки было показано, что он способен сохранять в памяти каждую деталь своих зрительных восприятий в течение 8 дней. Вторая часть книги будет в значительной мере посвящена рассмотрению этой временной спирализации молекул. Изучение структурных изменений мозговой ткани сейчас едва ли возможно, однако техника развивается такими темпами, что эта область исследования многое обещает уже в ближайшем будущем (Sjostrand, 1969).

Некоторые исследователи продолжают придерживаться гипотезы, что РНК является непосредственным хранилищем памяти, несмотря на серьезные доводы против этой гипотезы. Они основывают свою точку зрения яа весьма спорных экспериментах с «переносом», которые были проведены на планариях, крысах и обезьянах. В этих экспериментах экстракт РНК от контрольных животных и животных, обучавшихся выполнению задания, вводили необученным животным. Те из них, которым вводили РНК от животных, имевших опыт обучения, иногда, но не всегда решали задачи быстрее по сравнению с теми, которым вводили РНК от контрольных животных. Согласно некоторым данным, эффект различного действия РНК «обученного» и «контрольного» животного исчезал в результате обработки экстракта РНК веществом, избирательно разрушающим РНК (см. обзор McGonnell, 1970).

Сторонники химической гипотезы сохранения следов, оказавшись перед необходимостью выбора между двумя возможными решениями, в конце концов остановились на нейронных медиаторах. Уменьшение скорости и амплитуды нервных импульсов, когда они достигают окончаний аксонов, возникает из-за заметного уменьшения диаметра окончаний волокон. Следовательно, пресинаптических потенциалов самих по себе еще далеко не достаточно, чтобы вызвать постсинаптический потенциал. Однако пресинаптического электрического заряда достаточно, чтобы дать-толчок высвобождению медиатора, который хранится на окончании аксона в маленьких пузырьках (рис. II-12).


Рис. II-12. Типичная клетка коры. Обычная форма синапса-в мозгу млекопитающих. Ак-сонная (пресинаптическая) сторона вверху; дендритная (постсинаптическая) сторона – внизу, g – рлия; if – внутрисинаптические волоконца; mi – митохондрия, sc – синаптическая щь; ssw – субсинаптическая паутина; sv – синаптические пузырьки; v – везикулярное тело (Calvin. 1967, см . Roberts, 1S62).


Память могла бы зависеть от легкости, с которой высвобождается медиатор, или от его количества. Таким образом, можно провести такие эксперименты – и они действительно проводятся, – когда медиатор нейтрализуется в результате действия фармакологических веществ или его разрушение блокируется во время тренировки животного (Deutsch, Hamburg and Dahl, 1966). В результате таких действий у крыс нарушается процесс научения, но, как и в исследованиях с применением веществ, тормозящих обмен, возникает вопрос, не вызывает ли введение фармакологических веществ побочных эффектов, меняющих деятельность мозга и, следовательно, влияющих на процесс запоминания, – таких побочных эффектов, как появление локальных электрических разрядов в частях мозга, не связанных непосредственно с сохранением следов памяти, как таковой, но препятствующих обращению к ней во время проверки результатов научения.


ИНДУКЦИЯ КАК МОДЕЛЬ ХРАНЕНИЯ СЛЕДОВ ПАМЯТИ

Моя реакция на изобилие экспериментальных данных, полученных при исследовании энграммы в 1960-е гг., двойственна. Во-первых, можно прийти к выводу, что существует не один механизм памяти, не единая молекула памяти. Пластичность нейрона многообразна, и память не является единым процессом. Воображение, узнавание, припоминание предполагают использование некоторых или всех основных форм пластичности нервной ткани и различных способов сохранения и воспроизведения следа. Поэтому первый вывод, который следует сделать, состоит в том, что память, как она обычно представляется, не единый механизм, лежащий в основе процессов, которые позволяют организму устанавливать связи между отдельными звеньями опыта.

Во-вторых, простая модель следов, предполагающая постоянную модификацию мозговой ткани на нейронном уровне, может быть сформулирована уже сейчас. Такая модель должна обеспечить не только возможность сохранения следов, но и доступность считывания зафиксированного изменения. Наконец, такая модель должна быть основана на уже имеющихся данных и отвечать здравому биологическому смыслу. В настоящее время наиболее вероятным источником такой модели может служить аналогия с процессом, происходящим во время эмбрионального развития организма (рис. II-13).


Рис. II-13. Связь в виде треугольника, сформированная между тремя спинальными ганглиями эмбриона in vitro. Рисунок иллюстрирует тенденцию нервной ткани формировать узоры нервных волокон (Weiss, 1967).


Такие структуры, как глаз, формируются только тогда, когда ткань, из которой они развиваются, соответствующим образом стимулируется. Большая часть эмбриональной ткани эквипотенциальна, то есть ДНК во всех клетках тела, по существу, одна и та же. Это означает, что потенциал первоначально подавлен, находится в состоянии «репрессии». «Дерепрес-сия», или освобождение потенциальных возможностей, происходит тогда, когда появляются соответствующие условия. Определение эмбриологами того, каковы эти условия, заняло почти целое столетие. В настоящее время хорошо известно, что РНК и некоторые эндокринные секреты являются индукторами такой «дерепрессии». Маловероятно, что эти химические соединения несут в себе всю информацию, необходимую для индукции; большая доля специфики процесса должна быть отнесена за счет субстрата. Например, РНК, выделенная из печени теленка, может быть использована как индуктор для хрусталика глаза крысы. Отношения между индуктором и субстратом, по-видимому, следующие.

1. Индукторы извлекают и реализуют потенциальную генетическую информацию организма

2. Индукторы в известной мере специфичны в отношении характера извлекаемой генетической информации, но они неспецифичны относительно вида особи или ткани

3. Индукторы определяют общую схему индуцированного свойства, специализация деталей возникает в результате деятельности субстрата

4. Индукторы непосредственно не являются толчком для развития, они составляют особый класс стимулов

5. Чтобы быть эффективными, индукторы должны взаимодействовать с субстратами Однако, чтобы вызвать эффект, недостаточно простого контакта – ткань должна быть готова правильно реагировать

6 Индукция обычно развивается в результате действия в двух направлениях благодаря химическому взаимодействию между индуктором и субстратом.

Данные о роли РНК в сохранении следов памяти в настоящее лремя могут быть объяснены при помощи модели, основанной на этом эмбриональном процессе индукции. Модель предполагает, что возбуждение нервных структур сопровождается образованием РНК. Эта нейронная РНК вызывает изменения в окружающей «лигодендроглии, в результате чего начинается химический процесс между нейроном и глией, характеризующийся реципрокными отношениями изменений нейронной и глиальной концентрации РНК (и множества метаболитов). Происходит изменение в функциональном взаимодействии между глией и нейроном. На первом этапе может возникнуть соответствующее изменение концентрации РНК в глиальной клетке, которое затем в течение длительного времени будет вызывать изменение в структурах липидов, протеинов и липопротеинов во всех больших молекулах, составляющих мембраны, через которые осуществляется взаимодействие нейрона с глией. Такие макромолекулярные изменения могут влиять на легкость освобождения и разрушения нейронных медиаторов. Эти структурные изменения обратимы и могут стираться или быть вытеснены другими изменениями. Однако, если при неоднократном повторении одного и того же типа воздействия' изменения в молекулярной структуре будут продолжаться достаточно долго, они вызовут эффективные изменения мембранной проницаемости, которые в свою очередь способствуют появлению в возбужденном нейроне большого количества РНК, метаболитов и медиаторов, оказывающих влияние на окружающую его глию в том месте, где происходит деление глиальной клетки. Конус роста нейрона, освободившийся от инкапсулированной глии, свободно воздействует на недавно сформировавшиеся дочерние клетки в образует новые связи с нейронами. Таким образом, клеточное деление олигодендроглии направляет конусы роста нейронов центральной нервной системы во многом так же, как на периферии их рост направляют соответствующие шванновские клетки (рис. II-14).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*