KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Медицина » Т. Селезнева - Гистология. Полный курс за 3 дня

Т. Селезнева - Гистология. Полный курс за 3 дня

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Т. Селезнева, "Гистология. Полный курс за 3 дня" бесплатно, без регистрации.
Перейти на страницу:

Оболочки головного и спинного мозга

Головной и спинной мозг покрыты тремя видами оболочек: мягкой (непосредственно прилегающей к тканям мозга), паутинной и твердой (граничит с костной тканью черепа и позвоночника). Мягкая мозговая оболочка покрывает ткань мозга, она отграничена от нее лишь краевой глиальной мембраной. В этой оболочке имеются в большом количестве кровеносные сосуды, питающие мозг, и многочисленные нервные волокна, концевые аппараты и одиночные нервные клетки. Паутинная оболочка представляет собой очень нежный, рыхлый слой волокнистой соединительной ткани. Между ней и мягкой мозговой оболочкой лежит субарахноидальное пространство, которое сообщается с желудочками мозга и содержит цереброспинальную жидкость. Твердая мозговая оболочка образована плотной волокнистой соединительной тканью, она состоит из большого числа эластических волокон. В полости черепа она плотно сращена с надкостницей. В спинномозговом канале твердая мозговая оболочка отграничена от периоста позвонков эпидуральным пространством, заполненным слоем рыхлой волокнистой неоформленной соединительной ткани, что обеспечивает ей некоторую подвижность. В субдуральном пространстве содержится небольшое количество жидкости.

Тема 19. СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА

Сердце, кровеносные и лимфатические сосуды в совокупности представляют собой сердечно-сосудистую систему. Благодаря ей ткани и органы человеческого организма обеспечиваются питательными и биологически активными веществами, газами, продуктами метаболизма и тепловой энергий.

Кровеносные сосуды

Это замкнутые в виде кольца трубочки различного диаметра, осуществляющие транспортную функцию, а также налаживающие кровоснабжение органов и обмен веществ между кровью и окружающими тканями. В кровеносной системе выделяют артерии, артериолы, гемокапилляры, венулы, вены и артериоло-венулярные анастомозы. Сосуды малого калибра в сумме составляют микроциркуляторное русло.

Развитие кровеносных сосудов – ангиогенез

Ангиогенез – процесс образования и роста кровеносных сосудов. Он происходит так в нормальных условиях (например, в области фолликула яичника после овуляции), так и в патологических (при заживлении ран, росте опухоли, в ходе иммунных реакций, наблюдается при неоваскулярной глаукоме, ревматоидном артрите и других патологических состояниях). Для выживания клеток необходимы кислород и питательные вещества. Минимальное расстояние для эффективной диффузии газа от кровеносного сосуда (источник кислорода) до клетки составляет 100 – 200 мкм. В случае превышения этой величины образуются новые кровеносные сосуды. Ангиогенез вызывают низкое рО2, снижение рН, гипогликемия, механическое напряжение в ткани вследствие пролиферации клеток, инфильтрация ткани иммуно-компетентными или поддерживающими воспаление клетками, мутации (например, активация онкогенов или делеция генов-супрессоров опухоли, контролирующих образование ангиогенных факторов).

Ангиогенные факторы

Данные факторы стимулируют образование кровеносных сосудов. Это факторы роста, продуцируемые опухолями, компоненты внеклеточного матрикса, ангиогенные факторы, вырабатываемые самими эндотелиальными клетками. Ангиогенез стимулируют сосудистый эндотелиальный фактор роста (VEGF), ангиогенин, факторы роста фибробластов (aFGF – кислый и bFGF – щелочной), трансформирующий фактор роста (TGFa). Все ангиогенные факторы можно подразделить на две группы: первая – прямо действующие на эндотелиальные клетки и стимулирующие их митозы и подвижность, и вторая – факторы непрямого влияния, воздействующие на макрофаги, которые, в свою очередь, выделяют факторы роста и цитокины. К факторам второй группы относят, в частности, ангиогенин. В ответ на действие ангиогенного фактора эндотелиальные клетки начинают размножаться и менять свой фенотип. Пролиферативная активность клеток может увеличиваться в 100 раз. Эндотелиальные клетки через собственную базальную мембрану проникают в прилежащую соединительную ткань, участвуя в формировании почки капилляра. По окончании действия ангиогенного фактора фенотип эндотелиальных клеток возвращается в исходное спокойное состояние. На более поздних стадиях ангиогенеза в ремоделировании сосуда участвует ангиопоэтин-1, с действием которого также связывают стабилизирующее влияние на сосуд.

Торможение ангиогенеза. Данный процесс имеет важное значение, его можно рассматривать как потенциально эффективный метод борьбы с развитием опухолей на ранних стадиях, а также других заболеваний, связанных с ростом кровеносных сосудов например, неоваскулярной глаукомы, ревматоидного артрита). Ингибиторы ангиогенеза – факторы, тормозящие пролиферацию главных клеточных типов сосудистой стенки: ангиостатин, эндостатин, ингибиторы матриксной металлопротеиназы – α-ИФН, р-ИФН, γ-ИФН, ИЛ-4, ИЛ-12, ИЛ-18, пролактин, плазменный фактор свертывания крови IV. Естественный источник факторов, тормозящих ангиогенез, – ткани, не содержащие кровеносных сосудов (эпителий, хрящ).

Злокачественные опухоли требуют для роста интенсивного кровоснабжения и достигают заметных размеров после развития в них системы кровоснабжения. В опухолях происходит активный ангиогенез, связанный с синтезом и секрецией опухолевыми клетками ангиогенных факторов.

Разновидности кровеносных сосудов и их строение

К артериям относят сосуды, по которым кровь идет от сердца к органам. Как правило, эта кровь насыщена кислородом, исключением являются системы легочной артерии, несущей венозную кровь. К венозным относят сосуды, по которым кровь идет к сердцу и содержит мало кислорода, кроме крови в легочных венах. Через сосуды микроциркуляции (артериолы, гемокапилляры, венулы и артериоло-венулярные анастомозы) происходит обмен между тканями и кровью.

Гемокапилляры соединяют артериальное звено кровеносной системы с венозным помимо сетей, капилляры которых располагаются либо между двумя артериями (например, в клубочках почки), либо между двумя венами (например, в дольках печени). Структурой сосуда определяется его функция, а также гемодинамические показатели крови (кровяное давление, скорость кровотока).

Все артерии делятся на три типа: эластический, мышечный и смешанный (мышечно-эластический). Стенка всех артерий и вен состоит из трех оболочек: внутренней, средней и наружной. Их толщина, тканевый состав и функциональные особенности неодинаковы в сосудах разных типов. К артериям эластического типа причисляют сосуды крупного калибра (аорту и легочную артерию): в них кровь вливается под высоким давлением (120 – 130 мм рт. ст.) и с большой скоростью (0,5 – 1,3 м/с) или непосредственно из сердца, или вблизи от него из дуги аорты. Главная функция этих сосудов – транспортная. Высокое давление и большая скорость протекающей крови определяют строение стенки сосудов эластического типа. Так, внутренняя оболочка крупных артерий включает эндотелий с базальной мембраной, далее идет подэндотелиальный слой и сплетение эластических волокон. Эндотелий человека состоит из клеток различных по своей форме и размерам. По всей длине сосуда размеры и форма клеток неодинаковы: иногда клетки иногда могут достигать 500 мкм в длину и 150 мкм в ширину. Как правило, они бывают одноядерными, но встречаются и многоядерные. Подэндотелиальный слой представлен рыхлой тонкофибриллярной соединительной тканью, богатой малодифференцированными клетками звездчатой формы. Толщина подэндотелиального слоя значительная. Иногда могут встречаться отдельные продольно направленные гладкие мышечные клетки. Межклеточное вещество внутренней оболочки крупного сосуда или реже других оболочкек содержит большое количество гликозаминогликанов и фосфолипиды, обнаруживаемые при соответствующей обработке. При этом известно, что у людей старше 40 – 50 лет обнаруживаются холестерин и жирные кислоты. Большое значение в трофике стенки сосуда имеет аморфное вещество. Средняя оболочка крупного сосуда состоит из большого количества эластических окончатых мембран, связанных посредством эластических волокон. В итоге вместе с другими оболочками они образуют единый эластический каркас. Между мембранами залегают гладкомышечные клетки (ГМК), которые имеют по отношению к мембранам косое направление, и немного фибробластов. Благодаря такому строению в крупных сосудах смягчаются толчки крови, выбрасываемой в сосуд при сокращении левого желудочка сердца, а также обеспечивается поддержание тонуса сосудистой стенки во время диастолы. Наружная оболочка состоит из рыхлой волокнистой соединительной ткани, имеющей множество эластических и коллагеновых волокон с продольным направлением. Строение и функциональные особенности артерий смешанного вида занимают промежуточное положение между сосудами мышечного и эластического типа. К таким сосудам относятся сонная и подключичная артерии. Их стенка также состоит из внутренней оболочки, подэндотелиального слоя и внутренней эластической мембраны. Средняя оболочка артерий смешанного типа имеет одинаковое количество гладких мышечных клеток, эластических волокон и окончатых эластических мембран. А в наружной оболочке артерий выделяют два слоя: внутренний, содержащий отдельные пучки гладких мышечных клеток, и наружный, состоящий преимущественно из продольно и косо расположенных пучков коллагеновых и эластических волокон и соединительно-тканных клеток, сосудов и нервных волокон. К артериям мышечного типа относятся преимущественно артерии тела, конечностей и внутренних органов среднего и мелкого калибра, т. е. большинство артерий организма. Их отличительной особенностью является большое количество гладких мышечных клеток, которые обеспечивают дополнительную нагнетательную силу и регулируют приток крови к органам. Внутренняя оболочка состоит из эндотелия, подэнтелиального слоя и внутренней эластической мембраны. Из сосудов микроциркуляторного русла образуется густая сеть анастомозов прекапиллярных, капиллярных и посткапиллярных сосудов, причем возможны и другие варианты с выделением предпочтительного канала, например прекапиллярной артериолы и др. Артериолы являются мелкими артериями мышечного типа, постепенно они переходят в капилляры. В артериолах сохраняются три оболочки, характерные для более крупных артерий, однако степень их выраженности мала. Под электронным микроскопом в артериолах, особенно в прекапиллярных, можно выявить перфорации в базальной мембране эндотелия и внутренней эластической мембране, благодаря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток. Кровеносные капилляры – наиболее многочисленные и самые тонкие сосуды, однако диаметр их просвета может варьироваться. Это обусловлено как органными особенностями капилляров, так и функциональным состоянием сосудистой системы. Площадь поперечного сечения среза капиллярного русла в любой области во много раз превышает площадь поперечного среза исходной артерии. В стенке капилляров различают три тонких слоя как рудименты трех оболочек сосудов. Между клетками оболочек капилляров можно обнаружить щели (или поры), которые видны даже под световым микроскопом. Фенестры и щели облегчают проникновение различных макромолекулярных и корпускулярных веществ через стенку капилляров. Растяжимость эндотелия и проницаемость для коллоидных частиц в венозном отделе капилляра оказывается выше, чем в артериальном. Стенка капилляров является полупроницаемой мембраной, тесно связанной функционально и морфологически с окружающей соединительной тканью и активно регулирующей обмен веществ между кровью и другими тканями. Венозной частью капилляров начинается отводящий отдел микроциркуляторного русла, для них характерны более крупные микроворсинки на люминальной поверхности эндотелия и складки, напоминающие створки клапанов, чаще обнаруживаются фенест-ры в эндотелии. В посткапиллярные венулы собирается кровь из капиллярного русла. Строение этих сосудов отличается более короткими размерами эндотелиальных клеток, округлостью ядер, выраженностью наружной соединительно-тканной оболочки. Венозный отдел микроциркуляторного русла выполняет дренажную функцию, регулируя равновесие между кровью и внесосудистой жидкостью, удаляя продукты метаболизма тканей. Через стенки венул часто мигрируют лейкоциты. Медленный кровоток и низкое кровяное давление, а также растяжимость этих сосудов создают условия для депонирования крови.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*