KnigaRead.com/

Инал Акоев - Биофизика познает рак

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Инал Акоев, "Биофизика познает рак" бесплатно, без регистрации.
Перейти на страницу:

Так, Ю. И. Москалев и В. Н. Стрельцова, анализируя возможные механизмы развития злокачественных опухолей щитовидной железы после воздействия ионизирующих излучений, рассматривают следующую последовательность событий: радиационное воздействие → радиационное повреждение щитовидной железы → снижение секреции тиреоидных гормонов → понижение уровня тиреоидных гормонов в крови → гиперфункция гипофиза и избыток выработки тиреотропного гормона → гиперплазия сохранившейся ткани щитовидной железы → гормонозависимая аденома щитовидной железы → гормононезависимая (злокачественная) опухоль щитовидной железы.

В указанной последовательности событий опухоль вызывается не воздействием радиации и не радиационногенетическим повреждением тканей железы, а непосредственной избыточной стимуляцией ее тиреотропным гормоном гипофиза. Возникшая гиперплазия оставшейся функционально способной ткани железы и стала главным фактором, приведшим к опухолевому процессу.

Такую последовательность событий подтверждают и массовые опыты на чистопородных собаках, которых облучали в очень малых дозах (0,16 или 0,83 Гр) перед или в ближайшие сроки после рождения. Ряд авторов проследили все этапы развития, начиная с атрофии железы с последующими очагами гиперплазии фолликулярных клеток до неоплазии и образования эктопических опухолей тиреоидной ткани в отдаленные сроки после облучения. Вот последовательности событий, отмеченные этими авторами:

1) введение в организм больших доз радиоактивного йода → концентрация йода в щитовидной железе → ингибирование функций щитовидной железы → напряжение тиреотропной функции гипофиза → опухоль гипофиза;

2) локальное облучение яичников → фолликулярные кисты яичников → дисгормональные опухоли матки, молочной железы.

Во всех указанных случаях неопластические процессы возникали из клеток, непосредственно не подвергавшихся воздействию радиации.

В наших работах, рассмотренных выше, приведены материалы, которые позволили предполагать повышение пострадиационного порога чувствительности органов-мишеней для гормонов периферических желез, что снижает эффективность действия этих гормонов и влечет за собой цепь последующих изменений. Среди них — компенсаторное повышение функциональной активности этих желез, чреватое переходом в патологическую гиперактивность или истощение. Следовательно, и в этих случаях можно говорить о возможном развитии болезней компенсации и об увеличении частоты возрастной патологии. При этом главное внимание мы обращали на исследование скрытой патологии со стороны системы крови.

Таким образом, изменение порога чувствительности к соединениям, осуществляющим прямую и обратную связь, с возрастом или под влиянием внешних воздействий может возникать не только в гипоталамусе, но и в периферических тканях органов-мишеней для действия гормона. По-видимому, они могут возникать в любом звене общей гомеостатической системы: гипоталамусе, гипофизе, периферических эндокринных железах и в тканях органов-мишеней. Так, снижение эффективности действия гормона вследствие меньшей чувствительности воспринимающих тканей показано как следствие воздействия радиации на примере чувствительности репродуктивной системы к гонадотропному гормону. Реакция щитовидной железы на введение тиреотропного гормона гипофиза с возрастом существенно понижается.

В таком случае снимается уникальность гипоталамуса как единственного звена гомеостатической системы, в котором происходит повышение (в более общем виде — изменение) порога чувствительности. Однако гипоталамус занимает верховное иерархическое положение в системе гомеостата, и потому изменения в нем будут иметь наибольшие последствия.

Молекулярные механизмы неотвратимого возрастного или ускоренного под влиянием внешних воздействий изменения порога чувствительности элементов системы гомеостата организма совершенно неизвестны. Совокупность имеющихся данных позволяет предполагать их связь с различными особенностями нарушений клеточного цикла пролиферирующих тканей и ошибок синтеза белка в активно функционирующих тканях.

Общие закономерности изменений клеток при их ускоренном размножении

Наиболее подробно эти закономерности изложены в монографии И. Г. Акоева и Н. Н. Мотлоха «Биофизический анализ предпатологических и предлейкозных состояний» [1984]. Ниже конспективно изложены материалы из этой монографии.

Нарушения клеточного цикла пролиферирующих тканей

Развитие предпатологических и патологических состояний в той или иной форме связано с изменениями нормального соотношения процессов клеточного размножения и специализации (дифференцировки). Нарушение регуляции этих процессов предшествует и развитию опухолей.

Функция дифференцировки присуща всем живым клеткам. При развитии и совершенствовании многоклеточных организмов клетки дифференцируются с целью обеспечения выполнения в интересах целого организма так называемых специфических функций, т. е. тех функций, в прямых или косвенных результатах которых нуждаются другие клетки организма, прежде всего клетки иных типов дифференцировки. В настоящее время считается доказанным, что ядро дифференцированной клетки в значительной мере сохраняет мультипотентность, т. е. способность давать информацию, необходимую для развития всех потенциально возможных функций клетки. Процесс дифференцировки, вероятно, происходит главным образом через регулируемую извне репрессию—дерепрессию последовательно сменяющихся ведущих генов, т. е. эпигенетическим путем, а не за счет главенствования необратимых изменений генетического аппарата. Этот во многом не решенный вопрос общебиологической значимости имеет самое непосредственное отношение и к проблеме опухолевой трансформации.

Такой эпигенетический характер регуляции предполагает, что процесс дифференцировки клетки, исходно развертываемый на основе наследственного материала, через посредство внутриклеточных медиаторов должен управляться внеклеточными факторами, или репрессорами, будь то ионный состав среды, наличие в ней определенных химических соединений, контактных механических взаимодействий и др. Правильный запуск любого очередного этапа дифференцировки клетки вообще невозможен без адекватной реализации обратной связи структурных генов с внеядерной и внеклеточной средой (в их широком понимании) для предшествующего этапа.

Существует определенный антагонизм между функциональной и митотической активностью, между процессами дифференцировки и пролиферации. На тканевом уровне, как и на уровне клеточных популяций, обратная зависимость между степенью дифференцировки и пролиферативной активностью остается в целом верной.

Известно важное обстоятельство, вытекающее из указанной закономерности: по мере дифференцировки снижается реализуемая способность клеток к делению. Достигнув некоторой пороговой степени дифференцировки, клетки могут вообще перестать делиться и продолжают далее дифференцироваться без митозов, как это происходит у млекопитающих с корковыми нейронами и миоцитами. Потеря способности клеток к делению часто есть следствие дифференцировки клетки, заключающееся в утрате еще одной клеточной функции.

Применение различных способов получения синхронно делящихся клеточных популяций и метода радиоавтографии привело к обнаружению морфологически неявно различимых периодов клеточного онтогенеза. Эти периоды, обозначенные как G1 (пресинтетический — до основного синтеза ДНК), S (синтетический — идет синтез ДНК) и G2 (постсинтетический, или премитотический, — подготовка к делению клетки), совместно с митозом в представленной последовательности составляют митотический цикл.

Величина пролиферативной активности определяется не только количеством делящихся клеток, но и скоростью их продвижения по периодам митотического цикла. Для большинства растущих клеточных линий и тканевых культур интервал между делениями, или длительность цикла, составляет 10—30 ч. Наибольшее количество экспериментальных работ проведено на культивируемых клетках Hela. Время генерации этих клеток около 24 ч. В среднем они находятся 15—16 ч в период G1, 6—7 ч — в стадии синтеза ДНК (S-период), 2 ч — в периоде G2 и митозе.

Большинство исследователей пришли к убеждению, что для различных клеточных типов изменения продолжительности митотического цикла в основном происходят за счет вариаций его начального, пресинтетического G1-периода. Его длительность меняется от неуловимо малых значений до нескольких суток и более.

Клетки могут находиться в двух альтернативных состояниях — в митотической активности или покое. В последние годы к покоящимся принято относить клетки, которые неопределенно долгое время могут не размножаться и при этом полностью сохранять как жизнеспособность, так и способность к пролиферации (т. е. к делению) независимо от степени своей специфической функциональной нагрузки. Покоящиеся клетки всего лишь часть непролиферирующей фракции клеточной популяции.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*