KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Иоланда Гевара - Том 38. Измерение мира. Календари, меры длины и математика

Иоланда Гевара - Том 38. Измерение мира. Календари, меры длины и математика

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Иоланда Гевара, "Том 38. Измерение мира. Календари, меры длины и математика" бесплатно, без регистрации.
Перейти на страницу:

В III веке до н. э. Аристарх Самосский вычислил, насколько дальше Земля располагается от Солнца, чем от Луны, а также определил их относительные размеры. Для этого он использовал следующее соотношение: треугольник ЗЛС, в вершинах которого находятся Земля, Солнце и молодая Луна, прямоугольный, так как угол Земля — Луна — Солнце равен 90°. Далее он измерил угол между Солнцем и Луной и принял его равным 87°. Так как сумма углов треугольника равна 180°, β = 3°.



Таким образом он смог вычислить отношение расстояний d(3, С)/d(3, Л) путем математических рассуждений. В упрощенном виде и в современной нотации суть рассуждений Аристарха записывается так:

cos 87° = d(T,L)/d(T,S),

где d(3, С) — расстояние от Земли до Солнца, d(3, Л) — расстояние от Земли до Луны:

d(T,S) = d(T,L)/cos 87°

так как 1/cos87°равняется примерно 19, имеем:

d(T,S) ~= 19d(T,L).

Кроме того, так как Луна и Солнце наблюдаются с Земли под одним и тем же углом, равным половине градуса, отношение их диаметров будет таким же:

диаметр Солнца = 19 диаметров Луны.




Этот математический метод остроумен и точен, однако Аристарх допустил ошибку при измерении угла α: он равен не 87°, а 89°52’ (Солнце расположено примерно в 390 раз дальше от Земли, чем Луна).

* * *

Гиппарх Никейский

Гиппарх Никейский (ок. 190 г. до н. э. — ок. 120 г. до н. э.) применил новые измерительные приборы и первым количественно оценил неравномерности в движении Солнца и Луны. Он стал образцом для подражания для всех астрономов Александрии: пытаясь увязать принцип кругового движения с результатами наблюдений, он отдавал безоговорочный приоритет последним. Программа астрономических исследований Гиппарха выглядела так: астроном должен определить число круговых орбит небесных тел, их размеры и положение, а также скорость кругового движения, чтобы с помощью геометрических методов и численных расчетов показать, что предложенная система объясняет результаты наблюдений, позволяет делать точные количественные прогнозы и составлять прогнозные таблицы.

Гиппарх отметился важными результатами наблюдений, составил более точную карту звездного неба, систематизировал множество результатов, полученных вавилонскими астрономами, а также открыл предварение равноденствий (постепенное смещение точек равноденствия, или точек пересечения небесного экватора с эклиптикой, в силу которого равноденствия наблюдались раньше).

Во времена Гиппарха уже была известна длина окружности Земли — ее вычислил Эратосфен (об этом мы расскажем в главе 4). Зная длину окружности Земли, Гиппарх смог вычислить расстояния от нее до Солнца и Луны. Применив собственные методы и подходы, аналогичные подходам Аристарха, Гиппарх определил соотношение размеров Земли и Луны. Он наблюдал за тенью Земли на силуэте Луны в различных фазах лунного затмения и, приняв во внимание, что Солнце находится очень далеко от Луны и от Земли, вычислил: диаметр Земли в 8/3 раза больше диаметра Луны (а не в 2 раза, как рассчитал Аристарх). Он получил, что расстояние до Солнца составляет 490 радиусов Земли, а расстояние до Луны — от 39 до 67 радиусов Земли (реальное расстояние составляет примерно 60 радиусов Земли).


Клавдий Птолемей

Математик и астроном Клавдий Птолемей, живший во II веке (ок. 100 — ок. 170) работал в Александрийской библиотеке и музее. Именно он разработал методологию практической астрономии, дошедшую до XVI века. Его важнейший труд «Великое математическое построение по астрономии в 13 книгах», или «Альмагест», стал первым, где приводилось полное, подробное и системное описание движения всех небесных тел с точки зрения математики. Птолемей считал астрономические гипотезы истинными только в том случае, если для них выполнялись определенные физические принципы. Здесь имеется в виду не только принцип равномерного кругового движения, но и другие, имеющие отношение к аристотелевой физике, в частности геоцентризм, принцип расположения неподвижных звезд на одной сфере и принцип несуществования пустоты.

В своей теории движения планет Птолемей применил геометрические методы и поставил во главу угла точность расчетов, а не соблюдение реальных физических траекторий планет и принципов аристотелевой физики. Модели, составленные Птолемеем, позволяли прогнозировать положение планет.

* * *

ТЕОРИЯ ЭКСЦЕНТРИКОВ (ЭКСЦЕНТРИЧЕСКОГО КРУГА)

Если считать Землю (3) неподвижной и поместить планету (П) на круговую эксцентрическую орбиту, то есть орбиту, центр которой (Ц) не совпадает с Землей, можно объяснить, почему планеты проходят равные дуги за неодинаковые промежутки времени. При измерении с Земли видимая угловая скорость планеты, находящейся на эксцентрической орбите, в точке, ближайшей к Земле (перигелии), — больше, в точке, наиболее удаленной от Земли (афелии), — меньше, как показано на иллюстрации. Так, если планета движется с постоянной угловой скоростью w относительно Ц, то она пройдет расстояние отточки П1 до П2  за то же время, что и расстояние от П3 до П4, однако дуги П1П2 и П3П4 из точки 3 будут видны под разными углами. Этот метод позволил Гиппарху объяснить, почему скорость видимого движения Солнца по эклиптике в течение года меняется.



* * *

Теория гомоцентричных сфер была забыта, так как она не позволяла объяснить изменение яркости планет. В III веке до н. э. начали использоваться другие теории, в которых основную роль играла геометрия, а именно теория эксцентриков (эксцен трического круга) и теория эпициклов и деферентов. Понятия эпицикла и деферента, примененные Гиппархом, ввел Аполлоний Пергский (ок. 262 г. до н. э. — ок. 190 г. до н. э.). В «Альмагесте» используются, по сути, три математических понятия: эксцентрики (планеты располагались на орбитах, центр которых не совпадал с Землей), система эпициклов и деферентов (планеты располагались на окружностях — эпициклах, центры которых двигались вдоль других окружностей — деферентов, а в центре деферентов находилась Земля) и эквант (точка внутри деферента, отличная от его центра, относительно которой центр эпицикла описывает одинаковые углы за равные промежутки времени). С их помощью Птолемей не только объяснил все результаты наблюдений, но и смог предсказать положение планет в будущем.



Эпицикл и деферент. Планета (Р) находится на эпицикле и вращается с востока на запад (или наоборот) со скоростью w2. Одновременно с этим центр эпицикла (С) вращается с запада на восток со скоростью w1.


Астрономия Птолемея представляла собой не цельную систему, а совокупность частных решений для отдельных планет. Его система противоречила некоторым важным принципам физической картины, описанной Аристотелем. Возникло несоответствие между космологией — физической системой, которая объясняла мир в целом, однако не содержала математического описания наблюдаемых явлений, и очень точной математической астрономией, которая объясняла результаты наблюдений, но никак физически не описывала движение небесных тел.

* * *

СИСТЕМА ЭПИЦИКЛОВ И ДЕФЕРЕНТОВ. ОБЪЯСНЕНИЕ ПОПЯТНОГО ДВИЖЕНИЯ

Система эпициклов и деферентов позволяет объяснить попятное движение и изменение яркости планет, понимаемое как изменение расстояний от планет до Земли. Рассмотрим идеальный случай, в котором угловая скорость центра эпицикла С относительно Земли в три раза больше угловой скорости планеты относительно С(w2 = Зw1). Траектория движения планеты при наблюдении с Земли будет выглядеть так, как показано на иллюстрации, и планета будет описывать три петли, всякий раз приближаясь к Земле. Планета будет совершать попятное движение относительно звездного неба и будет блестеть ярче, потому что будет находиться ближе к Земле. Эта упрощенная модель достаточно точно описывает движение планеты Меркурий.



* * *

Система Коперника

Гелиоцентрическая модель, предложенная Аристархом Самосским в III веке до н. э., подвергалась критике по тем же причинам, по которым начиная от Аристотеля и Птолемея и до Коперника критике подвергались все модели, которые не были геоцентричными. Во-первых, физические доводы о неподвижности Земли не подвергались сомнениям, во-вторых, оценки размера Вселенной были ошибочными из-за отсутствия параллакса звезд.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*