KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Эрик Белл, "Магия чисел. Математическая мысль от Пифагора до наших дней" бесплатно, без регистрации.
Перейти на страницу:

Игнорируя «свиные» выпады в свой адрес, Милн опять спокойно отстаивал свою позицию. Рассказывая о своей теории, заменяющей теорию относительности, он утверждал, что «удивительно, но исключение дополнительных эмпирических обращений вполне выполнимо, как бы несовершенна ни оказывалась теория в своем нынешнем состоянии. Никто не был больше удивлен этому, [чем я сам]. Это – не априорная вера, над которой насмехаются; это полученный из опыта факт, с которым нужно считаться, что, когда мы таким образом устраняем подобные эмпирические обращения, выявляются закономерности (как логическое следствие [моей] гипотезы), которые выполняют роль тех самых законов природы, которые продолжают наблюдаться и соблюдаться. Эти закономерности имеют логический статус теорем, а итоговая логическая структура имеет статус (или получит таковой, если окажется безукоризненной) абстрактной геометрии, основанной на аксиомах».

Внимательный слушатель мог бы расслышать легкие приглушенные аплодисменты по крайней мере двоих экспертов в аудитории, которых никто официально не приглашал, но которые сами вызвались оценить полемику сторон. «Я всегда говорил им это», – прошептал Платон, одновременно с Кантом, произносившим ту же фразу. Из уважения к их общему ученику они прекратили шептаться, поскольку Милн продолжил анализировать проблему «происхождения законов природы».

«Эмпирическая физика, – заявил Милн, – не в силах взяться за эту проблему». Проблема появляется с «убеждения, что вселенная рациональна». Следовательно, это современное эхо мечты Пифагора. Милн объяснял свое понимание реального решения проблемы. «Под этим я под разумеваю, что, получив простую формулировку в ответ на вопрос «Что такое?», можно путем умозаключений легко вывести законы, удовлетворяющие условию. <…> Мы можем проверить это убеждение только путем отрицания, исследуя возможность выведения из некоторого принятого описания, каков характер законов, которым подчиняется «Что такое?», избегая, насколько возможно, всех обращений к опытным путем установленным законам. Законы природы были бы тогда не более случайны, чем геометрические теоремы. Создание Бога оказалось бы подчинено законам, которые не находятся в распоряжении Бога. Законы стали бы отражением мирового порядка». Несомненно, мы уже частично слышали это от последователей Аристотеля, логиков Средневековья.

Как и ожидалось, гадаринцы Дингла отказались «тонуть в море» без сопротивления. Конечно, некоторые из них отважно боролись и благополучно достигли суши. После любезного признания «занимательного выступления Дингла» Эддингтон «немного убавил риторику», перед тем как попытался совсем отказаться от нее. Эддингтон – физик, и в его ответе речь идет о Галилее и его взглядах, но никак не о галилеянах, жителях Галилеи, как в тех первоисточниках, из которых Дингл почерп нул свое нелестное сравнение. «Моя точка зрения, – объяснил Эддингтон, – представляет определенный контраст представлениям Галилея; и я чувствую большое удовлетворение оттого, что потряс несгибаемых последователей [Дингла] школы Галилея <…> После довольно обширного ряда исследований я обнаружил, что большая часть современной физики выводима априорным доказательством и потому не составляет знание реально существующей вселенной».

Ропот одобрения, который раздался на этой словесной дани «априорному», шел от Канта. Это прошло незамеченным, поскольку Эддингтон перешел к N – внушительному числу 2.136 × 2256, которое он вывел в 1937 году на основе своих эпистемологических принципов в качестве общего количества частиц во вселенной. «Когда квантовый физик выражает числом количество частиц в системе, не важно, малое или большое, он дает число, на которое рассчитывает квантовая арифметика. Мировая константа N – число квантовой арифметики; она не могла бы иметь никакого другого значения, поскольку арифметика Пифагора не участвует в этом заезде. <…> Мы обнаруживаем, что в соответствующей [квантовой] арифметике целые числа начинаются только от 1 до 2.136 × 2256. Таким образом, мы можем получить число «всех частиц, которые существуют» из нашего априорного знания арифметики, которая используется для их подсчета. С философской точки зрения мы развенчали N».

Пифагор мог бы ответить, что, хотя его арифметика (или нумерология) и «не участвует в забеге», по существу, именно он с постоянством легко выигрывает в любом состязании с соперниками, не важно, чемпионами или неудачниками, как только что продемонстрировал выдающийся ниспровергатель.

Чрезмерно самоуверенный тон ведущих пифагорейцев не проходил незамеченным даже для сочувствующих им, и кое-кто попытался слегка умерить их пыл. Так, способный коадъютор Эддингтона, релятивист Уильям Хантер Маккри, возможно почувствовав нарастающую напряженность дискуссии, спросил: «Тогда получается, что мы можем вообще обойтись без всяких других гипотез, то есть что все остальные гипотезы будут появляться в соответствии с соглашениями мысли или выражения мысли? Теорию Эддингтона… назовем ее так, фактически можно расценить как усилие, предпринятое в этом направлении. Боюсь, однако, что я, возможно, безрассудно вторгся в сферу, куда и ангелы боятся ступить».

Менее робкие новые участники рвались участвовать в полемике, и ветераны стали выступать по второму разу. Из тех, кто еще не выступал, биолог-марксист Джон Бердон Сандерсон Холдейн внес одну из наиболее интересных тем на обсуждение, вероятно, потому, что он видел пифагореизм с выигрышной позиции, недоступной физикам. Будучи квалифицированным специалистом в области математической генетики и столкнувшись с пределами использования математического умозаключения в биологических науках, Холдейн более объективно судил об использовании математики в науке, чем те, у кого отсутствовал подобный опыт. Биолог отверг эпистемологическую физику и астрономию, заметив, что гипотеза Милна «показалась бы фантастической Аристотелю, Птолемею и святому Фоме».

За Холдейном выступил Гарольд Джеффрис, известный своей работой по научным умозаключениям, который предложил сдержанный диагноз современного пифагореизма в целом. «Я полагаю, – отважился заявить он, – что источник всех бед состоит в убеждении, что у математики имеется некоторое особое преимущество. Вместо того чтобы быть оцененной такой, какова она есть, а именно инструментом для суждений слишком сложных, чтобы быть переданными без нее, математика окружена эмоциями до такой степени, что многие думают, будто ничто, кроме математики, не имеет никакого смысла; тогда как, по мнению некоторых из лучших чистых математиков, характерной особенностью математики является то, что она сама по себе имеет смысл…Ее назначение – соединить постулаты с наблюдением». Но, как мы видели, другие «лучшие чистые математики» по-прежнему верят, что «математическая реальность лежит вне нас».

Диагноз Джеффриса был детализирован Луи Наполеоном Георгом Файлоном, математиком и физиком более старой традиции: «Настоящим бедствием оказывается тот факт, что вместо того, чтобы начинать с наблюдательных фактов и затем постепенно выстраивать методом индукции частные законы, которые либо окажутся, либо не окажутся в дальнейшем связаны между собой, некоторые представители науки, вероятно, думают, будто они в состоянии объяснить все глобальные вопросы природы с помощью некоторой комплексной математической интуиции. На самом деле они не природу изучают, а исследуют возможности человеческого сознания». И затем живительный ироничный штрих: «Я, кажется, припоминаю фразу, которую лицемерно произносили по поводу гипотез, «раздробленных в тиши уединенных кабинетов». Судя по той научной литературе, которая публикуется в наши дни, что-то, видимо, случилось с нашими дробильными машинами».

Профессиональному астроному, Ральфу Аллену Сэмпсону, оставалось только напомнить пифагорейцам, что логика (их или таковая кого-либо еще) малозначима для реального мира. «Ибо там, где действует логика, – заметил Сэмпсон, – она предлагает нам сообщить, что случится в другом времени и месте, о котором, в соответствии с гипотезой, мы не имеем никакого представления. Конечно, большая часть логики является объяснительной [аналитической, по Канту], простым подробным разъяснением подразумевающегося в утверждениях. Возьмите, к примеру, математику. Утверждения, найденные у Евклида, содержатся в определениях, постулатах и аксиомах. Это – простые утверждения. Ни одно из них не может быть доказано или опровергнуто, и интерес к ним зависит от того, как они согласовываются с внешним миром. Все остальное – процесс подробного разъяснения, и так для других случаев – все следуют по одинаковой схеме. <…> Самая большая ошибка состоит в том, что математика затуманивает различие между прошлым и будущим – количества, которыми она апеллирует, бесконечны».

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*