KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Питер Эткинз, "Десять великих идей науки. Как устроен наш мир." бесплатно, без регистрации.
Перейти на страницу:

4. Все прямые углы равны друг другу.

5. Для любых данных прямой и точки, не лежащей на ней, можно провести через эту точку одну, и только одну прямую, параллельную данной.

(Я несколько упростил эти утверждения, но сохранил их суть.) Пятая аксиома известна как постулат о параллельных прямых. Он ответственен за большее количество бед, чем почти любое другое утверждение в математике, ибо он имеет более сложный вид по сравнению с другими, соблазнительно намекая, что его можно доказать с помощью четырех более простых аксиом. Целые жизни напрасно были растрачены на безуспешные попытки вывести эту аксиому из других. Теперь мы знаем, что она независима от других аксиом и что можно придумать абсолютно приемлемые геометрии, в которых постулат о параллельных прямых заменен другими, таким, например, как:

5'. Для любых данных прямой и точки, не лежащей на ней, нельзя провести через эту точку ни одной прямой, параллельной данной.

Или даже:

5''. Для любых данных прямой и точки, не лежащей на ней, можно провести через эту точку бесконечное число прямых, параллельных данной.

Описание пространства, использующее постулат Евклида о параллельных прямых, называется евклидовой геометрией; описания, основанные на альтернативных постулатах, называются неевклидовыми геометриями.

Пока что мы сосредоточимся на евклидовой геометрии, так как она, безусловно, выглядит подходящей для пространства, в котором мы живем. В тринадцати книгах Евклида показано, что из этих пяти аксиом может быть выведено огромное количество свойств, и эти свойства оказываются верными при их проверке с помощью практических измерений. Одним из следствий этих аксиом, и, в частности, постулата о параллельных прямых, является теорема Пифагора. Поэтому существование нашей мифической формулы Хаммурапи для расстояния вытекает из пяти аксиом Евклида, и геометрия Хаммурапи тоже является евклидовой.

Итак, мы сформулировали евклидову геометрию на плоскости, в плоской двумерной области, похожей на поверхность листа бумаги. Однако мы все знаем, или думаем, что знаем, что обитаем в трехмерном пространстве и обладаем свободой движения вверх и вниз так же, как по плоскости. Теорему Пифагора легко распространить на три размерности, включив длину третьей стороны и записав:

расстояние2 = сторона12 + сторона22 + сторона32.

Мы не обязаны останавливаться на этом. Математики живут ненасытной страстью к обобщениям, и евклидова геометрия является богатой почвой для обобщений. Хотя большинство из нас не может вообразить что-нибудь за пределами наших домашних трех измерений, легко выразить свойства пространств больших размерностей, используя формулы. Так четырехмерная формула Пифагора будет иметь вид:

расстояние2 = сторона12 + сторона22 + сторона32 + сторона42.

Вы могли бы подумать, что в размышлениях о пространствах с более высокими, чем три, размерностями мало пользы, если не считать интеллектуального удовольствия, но вы были бы неправы. Мы увидим, к примеру, что способность переходить из размерности в размерность является ценным способом изучения структуры нашего мира. Более того, можем ли мы быть уверены, что в нашем реальном мире имеются только три измерения, или есть несколько — даже много — других измерений, которые как-то спрятаны от нас? Мы видели в главе 8, что такой уверенности нет, так как, может быть, мы обитаем в десятимерном пространстве с дополнительным измерением в виде времени.

Я утверждал, что наше воображение не может выйти за пределы трех измерений. Это не вполне верно. Некоторые люди, потратившие в жизни много времени на изучение геометрий более высоких размерностей, заявляют, что имеют некоторое отдаленное представление о связях, существующих в четырех, а не в трех измерениях, и создают ошеломляющие компьютерные образы, изображающие трехмерные сечения четырехмерного, мира (рис. 9.1).[45] Я не призываю вас направить ваши умственные способности по этому пути, но для подготовки к тому, что последует дальше, мы нуждаемся в некотором знакомстве с четырехмерными ландшафтами. Чтобы осуществить это, мы должны вновь пройти фрагменты пути интеллектуальной революции, инициированной итальянскими художниками в конце тринадцатого, начале четырнадцатого веков, такими как Джотто ди Бондоне и Пьеро делла Франческа, которые начали передавать три измерения в двух, используя перспективу, математические основы которой заложил в конце восемнадцатого века Гаспар Монж, граф де Пелоуз (1746-1818) в своей Géométrie descriptive (1798). Затем мы должны пойти дальше и увидеть, как четырехмерные объекты могут быть представлены трехмерными изображениями в двумерных проекциях. Все это звучит довольно сложно, ибо это все равно что просить муравья, который всегда был заперт в плоском мире, воспользоваться своим воображением, чтобы представить себе еще и вертикаль. Но мы интеллектуально оснащены лучше, чем муравьи, и можем ожидать, что достигнем некоторого прогресса.

Рис. 9.1. Некоторое отдаленное представление об объектах в гиперпространстве может быть получено с помощью графических образов и анимаций. Здесь изображены два кадра анимации, изображающей вращение плоского тора в четырех измерениях, спроектированное в три измерения и затем представленное в двух.

Ноль-мерный куб (0-куб) — это точка. Представьте себе 0-куб как карандашную точку, тогда одномерный куб (1-куб) является линией, которую карандаш рисует, когда его двигают по прямой (рис. 9.2). Двумерный куб (2-куб) является плоской фигурой, порожденной протаскиванием 1-куба в новом направлении, лежащем перпендикулярно первому. Все это легко воспринять с помощью компаса нашего воображения, так же как и воображения смышленого муравья, и легко проделать на листе двумерной бумаги. Трехмерный куб (3-куб), заурядный повседневный куб, порождается протаскиванием плоского 2-куба в направлении, перпендикулярном его плоскости. С тем, чтобы вообразить этот шаг, проблем не возникает, хотя муравей был бы озадачен, поскольку ему не дано понять, как может существовать третье перпендикулярное направление. Не возникает проблем и с представлением 3-куба на 2-странице, обычном листе бумаги, поскольку мы теперь так хорошо знакомы с двумерными представлениями в искусстве, что расшифровываем эти представления без труда.

Рис. 9.2. Кубы различных размерностей могут быть построены с помощью движения куба предшествующей размерности в новом, перпендикулярном направлении. Здесь мы видим семейство кубов, построенных из 0-куба (точки). Отрезок (1-куб) получен протаскиванием точки в одном направлении, квадрат (2-куб) — протаскиванием отрезка в перпендикулярном направлении, обычный куб (3-куб) — протаскиванием квадрата в новом перпендикулярном направлении. Мы научились интерпретировать результаты двумерных представлений куба. Наконец, четырехмерный гиперкуб (4-куб) строится путем протаскивания 3-куба в еще одном перпендикулярном направлении. Мы, человеческие существа, еще не знаем, как интерпретировать результирующую диаграмму: я показываю два изображения, полученных вращением гиперкуба в разных направлениях.

Чтобы помочь озадаченному муравью, мы можем проделать следующее. Мы осторожно разрежем 3-куб вдоль одной из граней, развернем его, положим на плоскость (рис. 9.3) и расскажем муравью, как нужно сложить грани, чтобы сформировать 3-куб. Муравей будет озадачен тем, каким образом края, которые я пометил жирной линией, могут соприкоснуться, но по крайней мере он будет иметь некоторое отдаленное представление о том, что такое 3-куб, и, возможно, научится интерпретировать наши двумерные представления 3-куба, включая забавную, в чем муравей может поклясться, картинку, на которой мы изображали его шестиугольником.

Рис. 9.3. Обычный куб в трехмерном пространстве может быть построен из крестообразной формы, состоящей из шести квадратов, путем склеивания вместе соседних сторон, перегибания длинной полосы и соединения краев, помеченных жирной чертой. То, что для соединения краев с жирной чертой можно использовать измерение, перпендикулярное к странице, легко увидеть нам, а существам, живущим в двумерном мире, трудно.

Мы знаем теперь достаточно, чтобы построить четырехмерный гиперкуб (4-куб). В математике многое делается по аналогии. Так же как мы протаскивали 0-куб, чтобы получить 1-куб, и так далее, мы построим 4-куб, протаскивая 3-куб (обычный куб) в направлении, перпендикулярном трем первым измерениям. Теперь мы оказались озадаченными муравьями, так как мы не понимаем, что такое направление, перпендикулярное нашим трем измерениям. Все же, в точности так, как муравей, не способный постичь третье измерение, мы можем сделать умственный прыжок и, приняв мысль о том, что оно есть — так же, как муравей, — попытаться понять его по аналогии. Чтобы облегчить себе понимание двумерного образа 4-куба, показанного на рис. 9.2, мы могли бы совершить гипердействие и разрезать куб вдоль некоторой грани, а затем развернуть его в трех измерениях (рис. 9.4). Так же как 3-куб разворачивается на шесть 2-кубов, 4-куб разворачивается на восемь 3-кубов (один 3-куб спрятан в центре верхнего креста). Чтобы вообразить, как 4-куб строится из 3-кубов, которые составляют его поверхность, представим себе склеивание. Нам, 3-читателям, аналогам 2-муравьев, кажется невозможным понять, как, например, могут быть соединены две помеченных грани, так же как у 2-муравья есть похожая проблема с тремя измерениями. У 4-читателя никаких трудностей тут нет.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*