KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Эрик Белл, "Магия чисел. Математическая мысль от Пифагора до наших дней" бесплатно, без регистрации.
Перейти на страницу:

Следующий критический эпизод в прогрессе математического мистицизма касается единственной неудачи безукоризненного наследника Евклида и неинформированного критика.

Глава 23

Поворотный пункт

Год 1733 – прошло шесть лет со дня смерти Ньютона, до конца света, предсказанного «Божественным Кузанином», оставался год, в судьбе математического мистицизма определенно настал решающий момент. Пифагореизм и платонизм в науке и математике исчерпали себя для тех ученых и математиков, кто познакомился с работами Джироламо Саккери. Но в части лавров Саккери повторял судьбу Роджера Бэкона. Критическим моментом стала измененная геометрическая истина, которая должна была войти в математику сразу за Саккери, но ее признание задержалось почти на целый век. На кону был статус геометрии Евклида.

Утверждают, что «Элементы» Евклида выдержали больше изданий, чем любая другая опубликованная книга, кроме Библии. По сравнению с другими математическими трудами «Элементы», возможно, оказали самое непосредственное влияние на формирование и увековечивание мнения, будто «математическая реальность лежит вне нас». Поколение за поколением, сотни тысяч, если не миллионы податливых учеников элементарной геометрии были убеждены безапелляционностью постулатов Евклида, что его учение – единственно возможное восприятие пространства. И только в 1903 году Евклид был повсеместно исключен из числа учебников для школьников, которым он никогда и не предназначался. Его последним педагогическим прибежищем стали средние школы Англии. Упрямое сражение в течение тридцати лет завершилось в конце победой, и «Евклид» как синоним школьной геометрии наконец стал отмершим понятием в цивилизованных языках.

Геометрия Евклида, но не «Элементы» Евклида, не вид геометрии, изучаемый в обычном школьном курсе, остается наиболее простым и наиболее полезным из всех видов геометрии для повседневной жизни и для, как принято считать, наибольшей части физических наук. Но обыденная польза – не единственное достоинство ее практического использования для нашего поколения. Не менее важно и все, что наши предки усвоили из тактики геометрических доказательств, пытаясь определить значение «истины» и «реальности». Влияние элементарной геометрии на их привычки думать было столь практично для них, а через них – для нас, сколь все когда-либо существующие механизмы созданы в соответствии с геометрией Евклида и механикой Ньютона. Абсолютизм геометрических истин, вложенный в юношей в годы формирования личности, обусловил для образованных, но не мыслящих критически голов принятие абсолютизма в виде других малопонятных «истин» от философии и религии до экономики и политики.

Прежде чем проследим закат абсолютизма евклидовой геометрии, стоит слегка освежить в памяти то, что известно о ее бессмертном авторе. Евклид так сросся со своей работой, что почти ничего не известно о нем как о личности. Даты его жизни неконкретны, где-то 330–275 годы до н. э. приводятся чаще, видимо достаточно точно. Предполагают, что образование он получил в Афинах, возможно в Академии. Попытки повторить расчеты математической истины Платона, оказавшие влияние на композицию «Элементов» Евклида, полностью опирались на необоснованные гипотезы. «Элементы» были закончены в Александрии, где Евклид прожил большую часть своей жизни в качестве члена научного сообщества, образовавшегося вокруг великой библиотеки.

В книге осуществлена компиляция и систематизация элементарных геометрических и арифметических знаний того времени. Персональный вклад Евклида состоит в классификации и систематизации всех разрозненных материалов в логической последовательности, где все, по задумке автора, должно быть выведено из досконально описанных постулатов по принятым правилам дедуктивного умозаключения. Мерой его успеха в этом амбициозном проекте является неподдельный исторический интерес. В плане геометрии – ничего существенного.

Если оценка кажется слишком жесткой, то любой беспристрастный критик в состоянии убедить себя менее чем за час (что часто и делалось, когда европейские геометры начали выздоравливать от некритического подхода к греческой математической классике), что несколько описательных определений Евклида неверны, что он часто опирался на неявные допущения в дополнение к постулатам, которыми он ограничивался, что некоторые из его предположений, как он их называет, ложны, а то, что он выдавал за доказательства других, бессмысленно.

Попытка доказательства самого первого предположения «На данной конечной прямой линии можно создать равносторонний треугольник» не подлежит даже исправлению. Его портит жуткая ошибка, которую любой наблюдательный школьник, пошевелив мозгами, моментально определит. Невозможно исправить попытку Евклида, используя только допущения, которые он сам себе позволял. Доказательство второго предположения зависит от доказательства первого, поэтому оно также ложно. Его третье упирается во второе. И так далее, вплоть до седьмого, полностью лишенного смысла. Если бы это кого-нибудь тревожило, то внутреннюю логическую структуру в части геометрии в «Элементах» следовало бы проанализировать от начала до конца в целях выявления неопределенных допущений и несовершенных доказательств. Однако тринадцать книг «Элементов» Евклида в течение почти двух тысяч лет оставались объектом слепого поклонения как олицетворение логического совершенства. И хотя наши попытки разобраться в правильности умозаключений может постичь та же участь, что и Евклида, его пример научил отдельных математиков быть внимательными в своих претензиях на вечные истины в части собственного вклада. Интересная догадка в отношении побудительного мотива Евклида на создание своего труда снова возвращает нас к пифагорейцам и Платону. Первое предположение имело целью создать простой правильный многоугольник (равносторонний треугольник). Заключительные шесть предположений книги XIII, венец проделанной работы, дают геометрическое построение пяти тел геометрически правильной формы. Таким образом, геометрическую часть «Элементов» следует рассматривать как математические границы пифагорейского космоса, придуманного Платоном. Тайная цель Евклида состояла в том, чтобы защититься этими границами от враждебных рациональных сомнений.

В эволюции геометрической истины существуют четыре критические даты: 1701, 1733, 1781 и 1826 годы. Связанные с ними имена соответственно: Джордж Беркли (1685–1753), Джироламо Саккери (1667–1733), Иммануил Кант (1724–1804) и Николай Лобачевский (1793–1856). Беркли был ирландским метафизиком, теологом и, наконец, епископом. Саккери – итальянским логиком-иезуитом и математиком. Кант – немецкий философ шотландского происхождения, не был математиком. Лобачевский – русский математик, никогда не был философом. За исключением Канта, каждый из этих людей внес значительный вклад в деплатонизацию математики в целом и геометрии в частности.

Беркли, кажется, оказался первым метафизиком в памяти истории (с сомнительным исключением некоторых средневековых номиналистов), который заподозрил, что нет ничего абсолютного в «истинах» геометрии.

Саккери, вопреки своему открытому стремлению и неискоренимой вере, оказался первым, кто продемонстрировал, что система геометрии Евклида – не единственная из приемлемых.

Кант просто допустил замысловатую ошибку. С позиций своих рассуждений, к которым мы вернемся в должном месте, он рассмотрел истинность элементарной геометрии (евклидовой) как априори аподиктической и синтетической. Иначе говоря, он поверил, что геометрические теоремы, такие как «сумма углов плоского треугольника равна двум прямым углам», являются неизменимыми истинами, свойственными реальности, какой она передается мысли самой структурой мозга, то есть человеческий мозг может воспринимать геометрические истины только через формы евклидовой геометрии. Эта геометрия, таким образом, навязана человечеству самой природой и мозгом. Только так, а не иначе.

Лобачевский, прекрасно понимая, чем он занимается и что его работа подразумевает для геометрической «истины», представил вполне законченную систему геометрии, самодостаточную и отличную от евклидовой, как и евклидова, пригодную для повседневного использования. Сознательно и преднамеренно Лобачевский сделал то, что Саккери, убеждая самого себя, считал невозможным, но что, несмотря на его стойкую лояльность к Евклиду, Саккери частично выполнил.

Кант и Лобачевский противоречат друг другу во всем. Хоть и предпринимались попытки показать, что Канта неправильно поняли и что его метафизика согласовывается с неевклидовыми геометриями, компетентные математики и математики-логики сошлись на том, что Кант ошибся. «Нет ничего, – утверждал Кант, – губительнее для философии, чем математика». Конечно, не было ничего губительнее для философии самого Канта, чем попытка доказать невообразимость геометрии отличной от евклидовой, поскольку геометрия Евклида была для него верной. Частично по аналогии с этой предполагаемой надежностью евклидовой геометрии, частично на основании других рассуждений Кант вывел свою теорию «вещей в себе» – переодетых абсолютов.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*