Генри Дьюдени - Пятьсот двадцать головоломок
— А сколько поездов встретится мне по пути?
Этот нелепый вопрос озадачил дежурного, но он с готовностью ответил:
— Поезда из Вюрцльтауна в Мадвилль и из Мадвилля в Вюрцльтаун отходят в пять минут первого, пять минут второго и так далее с интервалом ровно в один час.
Старая леди заставила одного из своих соседей по купе найти ответ на ее вопрос.
Так сколько же поездов встретится ей по пути?
80. Два чемодана. Одному джентльмену нужно было добраться до железнодорожной станции, расположенной в 4 км от дома. Его багаж состоял из двух одинаково тяжелых чемоданов, унести которые одному было не под силу. Садовник и слуга джентльмена настаивали на том, чтобы нести багаж доверили им. Но садовник был слишком стар, а слуга — слишком слаб. Джентльмен же настаивал на том, чтобы каждый принял равное участие в переноске багажа, и ни за что не хотел отказаться от своего права нести чемоданы причитающийся ему отрезок пути.
Садовник и слуга взяли по чемодану, а джентльмен, шагая налегке, думал, как ему надлежит действовать, чтобы все трое затратили равный труд.
Так как же?
81. Эскалатор.
— Спускаясь вниз по эскалатору, я насчитал 50 ступенек, — сказал Уокер.
— А я насчитал 75, — возразил Тротмен, — но я спускался в три раза быстрее вас.
Если бы эскалатор остановился, то сколько ступенек можно было бы насчитать на его видимой части? Предполагается, что оба человека двигались равномерно и что скорость эскалатора постоянна.
82. Тележка. «Три человека, — сказал Крэкхэм, — Аткинс, Браун и Крэнби, решили отправиться в небольшое путешествие. Им предстоит путь в 40 км. Аткинс идет со скоростью 1 км/ч, Браун — со скоростью 2 км/ч, а Крэнби на своей тележке, в которую запряжен ослик, делает 8 км/ч. Какое-то время Крэнби везет Аткинса, затем высаживает его, чтобы тот оставшееся расстояние прошел пешком, затем возвращается за Брауном и везет его до конечного пункта, причем все трое прибывают туда одновременно.
Сколько длилось путешествие? Разумеется, все это время приятели двигались с постоянной скоростью».
83. Четыре велосипедиста. Четыре одинаковых круга изображают четыре гаревые дорожки. Четверо велосипедистов стартуют из центра в полдень. Каждый движется по своему кругу со скоростями: первый — 6 км/ч, второй — 9, третий — 12 и четвертый — 15 км/ч. Они договорились ездить до тех пор, пока все в четвертый раз не встретятся опять в центре. Длина каждой круговой дорожки равна ⅓ км.
Когда произойдет встреча?
84. Три машины. Три машины едут по дороге в одном направлении и в некоторый момент времени располагаются относительно друг друга следующим образом. Эндрюс находится на некотором расстоянии позади Брукса, а Картер — на расстоянии, вдвое превышающем расстояние от Эндрюса до Брукса, перед Бруксом. Каждый водитель едет с постоянной скоростью, и Эндрюс нагоняет Брукса через 7 мин, а затем еще через 5 мин догоняет Картера.
Через сколько минут после Эндрюса Брукс догонит Картера?
85. Муха и автомобили. Длина дороги 300 км. Автомобиль А стартует на одном конце дороги в полдень и движется с постоянной скоростью 50 км/ч. В то же самое время на другом конце дороги стартуют автомобиль В с постоянной скоростью 100 км/ч и муха, делающая 150 км/ч. Встретив автомобиль А, муха поворачивает и летит навстречу В.
1) Когда муха встретит В?
2) Если бы, встретив В, муха повернула, полетела навстречу А, встретила его, снова повернула и так продолжала летать между А и В, пока они не столкнулись бы, то когда автомобили раздавили бы муху?
86. Лестницы метро. Как-то, выходя из станции метро «Керли-стрит», мы столкнулись с молодым атлетом Перси Лонгмеиом. Он остановился на эскалаторе и сказал:
— Вверх по эскалатору я всегда иду. Знаете ли, лишняя тренировка никогда не помешает. Этот эскалатор самый длинный на линии — почти тысяча ступенек. Но вот что интересно — и это относится и к другому, меньшему эскалатору, по которому мне часто приходится подниматься: если, поднимаясь вверх, я шагаю через две ступеньки, то на последний шаг приходится одна ступенька; если я шагаю через три ступеньки — то две ступеньки; если через четыре — то пять; если через пять — то четыре; если через шесть — то пять и, наконец, если я шагаю через семь ступенек, то на последний шаг приходится шесть ступенек. Почему так происходит, не знаю.
Когда Перси пошел дальше вверх, перешагивая через три ступеньки сразу, мы рассмеялись и мой спутник сказал:
— Он едва ли подозревает, что если бы делал шаги в 20 ступенек, то на последний шаг ему их осталось бы 19!
Сколько ступенек в эскалаторе на станции «Керли-стрит», если верхнюю площадку считать ступенькой, а нижнюю нет?[6]
87. Автобусная прогулка. Джордж отправился с любимой девушкой покататься на автобусе, но, подсчитав свои ограниченные ресурсы, понял, что возвращаться назад им придется пешком.
Если скорость автобуса 9 км/ч, а наша пара пешком делает 3 км/ч, то как далеко они могут прокатиться, чтобы на всю прогулку туда и обратно затратить 8 ч?
88. Транспортная головоломка. Двенадцать солдат должны одновременно как можно быстрее попасть в пункт, расположенный в 20 км от их местонахождения. Для этого они остановили небольшую автомашину.
— Я еду со скоростью 20 км/ч, — сказал водитель, — но с собой могу одновременно взять только четверых. С какой скоростью вы идете пешком?
— Каждый из нас проходит 4 км/ч, — ответил один из солдат.
— Прекрасно, — воскликнул водитель, — тогда я поеду вперед с четверыми из вас, подвезу их на какое-то расстояние, затем вернусь и посажу еще четверых, подвезу их тоже и возвращусь за остальными. От вас требуется лишь одно: все время, пока вы не едете на машине, идти пешком, я позабочусь об остальном.
Солдаты отправились в путь ровно в полдень. Когда они прибудут на место?
89. Чему равно расстояние? «Пароход, — заметил один из наших офицеров, вернувшихся с Востока, — способен развивать по течению скорость 20 км/ч, а против течения — только 15 км/ч. Поэтому весь путь между двумя пунктами вверх по течению занимает у него на 5 ч больше времени, чем вниз по течению».
Мы все не могли удержаться от того, чтобы не попытаться определить в уме расстояние между этими двумя пунктами. Чему оно равно?
90. Туда и обратно. Полковник Крэкхэм утверждает, что его приятель, мистер Уилкинсон, идет от своего загородного дома до ближайшего города со скоростью 5 км/ч, а возвращаясь немного усталым, проходит тот же путь со скоростью 3 км/ч. Путешествие туда и обратно занимает у него ровно 7 ч.
Как далеко от города расположен дом мистера Уилкинсона?
91. Встречные автомобили. Крэкхэмы должны были сделать первую остановку в Баглминстере и провести там ночь в доме друга семьи. Этот друг в свою очередь должен был выехать из дома одновременно с ними и остановиться в Лондоне в доме Крэкхэмов. И Крэкхэмы, и друг семьи ехали по одной дороге, высматривая друг друга, и встретились в 40 км от Баглминстера. В тот же вечер Джордж придумал следующую небольшую головоломку:
— Я обнаружил, что если бы по прибытии на место каждый из наших автомобилей немедленно двинулся в обратный путь, то мы встретились бы в 48 км от Лондона.
Если Джордж прав, то чему равно расстояние от Лондона до Баглминстера?
92. Велосипедные гонки. Два велосипедиста участвуют в гонках по круговой дорожке. Браун делает полный круг за 6 мин, а Робинсон — за 4 мин.
Через сколько минут Робинсон обгонит Брауна?
93. Небольшая головоломка с поездами. Экспресс из Баслтауна в Айрончестер идет со скоростью 60 км/ч, а экспресс из Айрончестера в Баслтаун, который выходит одновременно с ним, — со скоростью 40 км/ч.
На каком расстоянии друг от друга они будут находиться за час до встречи?
Я не смог найти эти города ни на карте, ни в справочнике, поэтому мне не известно точное расстояние между ними. Примем его не превышающим 250 км.
94. Прогулка по-ирландски.
— Однажды мне понадобилось, — рассказывал полковник Крэкхэм, — добраться из Богули в Болифойн, где меня ожидал друг. Из транспорта была доступна лишь ветхая телега старого Пэта Доуля, которую тащила кобыла, чья трудовая жизнь уже явно затянулась.
Невыносимо медленно, но все же неуклонно мы двигались вперед.
— Послушай, Пэт, — спросил я через несколько минут после начала нашего путешествия, — есть ли у твоей машины другая скорость?
— Как не быть, — ответил извозчик, — да только она поменьше этой будет.
— Тогда придется довольствоваться такой, какая есть, — сказал я.
Пэт уверил меня, что лошадь будет идти равномерным шагом, не замедляя и не ускоряя его, до самого конца нашего пути.