KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Чарльз Сейфе - Ноль: биография опасной идеи

Чарльз Сейфе - Ноль: биография опасной идеи

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Чарльз Сейфе, "Ноль: биография опасной идеи" бесплатно, без регистрации.
Перейти на страницу:

Для Пифагора исполнение музыки было математическим действием. Как квадраты и треугольники, струна являлась для него «число-формой», так что деление струны на части оказывалось тем же, что и нахождение отношения двух чисел. Гармония монохорда была гармонией математики — и гармонией Вселенной.

Пифагор пришел к заключению, что пропорция управляет не только музыкой, но и всеми другими видами красоты. Для пифагорейцев отношения и пропорции контролировали музыкальную красоту, физическую красоту, красоту математическую. Понять природу было так же просто, как понять математические законы пропорций. Такая философия — взаимозависимость музыки, математики и природы — вела к созданию самой ранней пифагорейской модели расположения планет. Пифагор утверждал, что Земля находится в центре Вселенной, а Солнце, Луна, планеты и звезды вращаются вокруг Земли, находясь внутри сфер (рис. 8). Пропорции сфер были прекрасны и упорядочены, и когда сферы двигались, они издавали музыку. Самые дальние планеты, Юпитер и Сатурн, двигались быстрее всего и производили самые высокие звуки. Самые ближние, такие как Луна, издавали более низкие ноты.


Рис. 8. Пифагорейская Вселенная


Все вместе движущиеся небесные тела создавали «музыку сфер»; небеса представляли собой прекрасный математический оркестр. Именно это Пифагор и имел в виду, говоря: «Все есть число».

Поскольку пропорции были ключом к пониманию природы, пифагорейцы и более поздние греческие математики тратили много сил на изучение их свойств. В конце концов они разделили пропорции на десять различных классов, назвав их гармоническим средним. Одно из этих средних давало самое «красивое» число на свете: золотое сечение.

Достижение этого восхитительного среднего было делом особого деления струны: нужно было разделить ее на две части так, чтобы отношение меньшей части к большей было таким же, как отношение большей части к целому (см. Приложение B). Выраженное словесно, такое отношение не кажется чем-то особенным, однако числа, связанные с золотым сечением, представлялись самыми красивыми объектами. Даже сегодня художники и архитекторы интуитивно ощущают, что такое соотношение длины и ширины наиболее эстетически привлекательно, а потому золотое сечение определяет пропорции многих произведений искусства. Некоторые историки и математики утверждают, что Парфенон, величественный афинский храм, был построен так, что золотое сечение осуществлено во всех его частях и деталях. Даже природа, кажется, учитывает золотое сечение в своих созданиях. Сравните соотношение размеров любых двух соседних камер раковины наутилуса или отношение направленных по часовой стрелке и против нее углублений на ананасе, и вы увидите, что эти пропорции близки к золотому сечению (рис. 9).


Рис. 9. Парфенон, раковина наутилуса и золотое сечение


Пентаграмма стала священным символом для братства пифагорейцев, потому что элементы звезды разделяются именно так: пентаграмма полна примеров золотого сечения, а для пифагорейцев золотое сечение было царем чисел. Тот факт, что золотое сечение было излюбленным соотношением и художников, и природы, считался доказательством правильности утверждения пифагорейцев о том, что музыка, красота, архитектура, природа и само строение космоса связаны между собой и нераздельны. На взгляд пифагорейцев, пропорции правили миром, а то, что было истиной для пифагорейцев, скоро стало истиной для всего Запада. Сверхъестественная связь между эстетикой, пропорциями и вселенной надолго сделалась центральным принципом западной цивилизации. Еще во времена Шекспира ученые говорили о революции разных пропорций сфер и обсуждали небесную музыку, звучащую по всему космосу.

В системе Пифагора нолю не было места. Эквивалентность чисел и фигур делала древних греков повелителями геометрии, однако она была связана с серьезным недостатком. Она мешала тому, чтобы рассматривать ноль как число. Какая фигура, в конце концов, могла быть нолем?

Легко визуально представить себе квадрат шириной и высотой в две единицы, но что за квадрат с нулевой шириной и высотой? Трудно представить себе квадрат, не имеющий ни ширины, ни высоты, не имеющий никакой материальности. Это означало, что умножение на ноль бессмысленно. Умножение двух чисел эквивалентно нахождению площади прямоугольника, но какой может быть площадь прямоугольника с нулевой высотой или шириной?

Сегодня великие нерешенные проблемы математики формулируются в теоретических формулах, которые математики не в силах доказать. В древней Греции, однако, «число-формы» побуждали мыслить иначе. Знаменитые нерешенные вопросы имели геометрическую форму: имея только линейку и циркуль, можно ли было построить квадрат, площадью равный заданному кругу? Можно ли было с помощью этих инструментов разделить угол на три части?[6] Геометрические построения и фигуры были одним и тем же. Ноль был числом, которое не имело никакого геометрического смысла, так что, чтобы включить его в свою математику, грекам пришлось бы полностью изменить способ вычислений. Они предпочли этого не делать.

Даже если бы ноль был числом в греческом смысле, составление пропорции с участием ноля противоречило бы законам природы. Пропорция больше не выражала бы отношение между двумя объектами. Частное от деления ноля на что угодно — на любое число — всегда равно нолю; другое число полностью поглощается нолем. А частное от деления чего угодно на ноль — числа на ноль — может разрушить логику. Ноль пробил бы дыру в аккуратном пифагорейском порядке Вселенной; по этой причине его нельзя было терпеть.

Пифагорейцы попытались дать отпор другой тревожащей математической концепции — понятию иррационального. Это был первый вызов их взглядам, и братство попыталось держать все в тайне. Когда секрет просочился наружу, последователи культа прибегли к насилию.

Понятие иррациональности таилось внутри греческой математики, как бомба с часовым механизмом. Благодаря двойственности «число-формы» греческое исчисление было равносильно измерению прямой. Таким образом, отношение двух чисел было не более чем сравнением двух отрезков разной длины. Однако для любого измерения требуется стандарт, общая мера для сравнения с величиной отрезков. Например, представьте себе отрезок прямой длиной ровно в фут. Сделайте отметку, скажем, на расстоянии пяти с половиной дюймов от одного конца, которая разделит фут на две неравные части. Греки вычислили бы пропорцию с помощью деления отрезка на маленькие кусочки, используя, например, стандартную мерку в полдюйма. Одна часть отрезка содержала бы одиннадцать таких мер, а другая — тринадцать. Отношение двух отрезков, таким образом, было бы 11:13.

Для того чтобы все вещи во Вселенной управлялись пропорциями, как надеялись пифагорейцы, любое имеющее смысл явление должно было быть связано с безупречной, точной пропорцией. Она в буквальном смысле слова должна была быть рациональной. Точнее, пропорции должны были иметь вид a / b, где a и b были бы безупречными, точными натуральными числами, такими как 1, 2 или 47. (Математики предупреждают, что b не должно быть нолем, потому что это было бы равнозначно делению на ноль, что, как мы знаем, катастрофично.)

Нет необходимости говорить: Вселенная вовсе не так упорядочена. Некоторые числа не могут быть выражены в виде простого отношения a / b. Эти иррациональные числа были неизбежным следствием греческой математики.

Квадрат — одна из простейших геометрических фигур, и пифагорейцы должным образом ценили его. (Квадрат имеет четыре стороны, что соответствует четырем элементам; он символизирует совершенство чисел.) Однако в простоте квадрата прячется иррациональность. Она появляется, если вы проведете диагональ — из одного угла в противоположный. В качестве конкретного примера представьте себе квадрат со стороной в один фут. Проведите диагональ. Одержимые рациональностью люди, такие как греки, смотрели на сторону и диагональ квадрата и спрашивали себя: каково отношение этих двух отрезков?

Первым шагом было бы создать общую мерку, может быть, маленькую линейку в полдюйма длиной. Следующим шагом было бы использование этой мерки, чтобы разделить оба отрезка на одинаковые части. Пользуясь полудюймовой меркой, мы можем разделить сторону квадрата длиной в один фут на двадцать четыре части, каждая длиной в полдюйма. Но что получится, когда мы измерим диагональ? Используя ту же мерку, мы обнаружим… что диагональ состоит из почти тридцати четырех таких частей, но совсем точно не делится. Тридцать четвертый кусочек чуть-чуть не умещается, линеечка торчит из угла квадрата. Мы можем усовершенствовать процесс, взять линеечку длиной в одну шестую дюйма и разделить отрезки на бо́льшее число частей. Тогда сторона квадрата окажется состоящей из семидесяти двух частей, но диагональ будет содержать больше сто одной, но меньше сто двух частей. Измерение снова окажется несовершенным. Что случится, если мы разобьем отрезки на действительно маленькие части — в миллионную долю дюйма каждая? На сторону квадрата придется двенадцать миллионов кусочков, но диагональ будет содержать их чуть меньше, чем 16 970 563. Снова наша линеечка не уляжется на оба отрезка в точности. Какую бы мерку мы ни выбрали, измерение так и не получится точным.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*