KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Эрик Белл, "Магия чисел. Математическая мысль от Пифагора до наших дней" бесплатно, без регистрации.
Перейти на страницу:

– Уверен, вы не в состоянии уважать профессионального математика как диалектика?

– Разумеется, нет. Мне не довелось встретить математика, способного размышлять, – спешит ответить Сократ.

Как ни суди, данное высказывание выглядит как честное признание. Хотя Сократ мог утрировать свою оценку, в наши дни полно людей, которые согласились бы с ним. Но Платон никогда.

Математика, утверждал он, ускоряет развитие умственных способностей и незаменима в качестве предварительной дисциплины для юных, тех кто еще недостаточно возмужал,

чтобы начать упорное изучение философии, диалектической аргументации и пифагорейской отрасли знания – нумерологии. Вклад математических занятий в достижение серьезных целей в философии прямой и позитивный. Важен именно математический метод, в значительно большей степени, чем математические истины. Будущий философ отрабатывает посредством геометрических упражнений правильное восприятие и функции определений, непосредственно дедукцию, технику анализа и метод доказательства от противного (описанный в одной из предыдущих глав), что важно как для диалектики, так и в организации строя мысли. Подобная тренировка необходима для всех, кто собирается получать знания, она готовит ум искать и распознавать наивысшие реальности как противостоящие чувственным свидетельствам. Математика сама по себе не может раскрыть высшую реальность или абсолютную истину, диалектика может. Мнение происходит от чувств и связано со «становящимся», знание идет от ума и относится к «существующему», математика становится мостом между мнением и знанием. Диалектика более проницательная и острая, чем математика, – это процесс, который выделяет новые истины путем анализа и аргументации. Исключительно в уме процесс проходит от Идеи, через Идею и к Идее. В чисто математическом доказательстве истинность гипотезы не подвергается сомнению. Диалектика же ищет и находит в идеях реальности, подтверждающие истинность математических предположений. Она подтверждает «самоочевидность» математических аксиом, называемых во времена Платона и долгое время после Платона «общеизвестными представлениями», как «самоочевидные истины» и проверяет базовые гипотезы и фундаментальные процессы всех методов раскрытия истин, из которых математический метод – лишь один из многих.

Если бы Платон писал сегодня, он, возможно, назвал бы все это метаматематикой и металогикой 1930-х годов. Две простые иллюстрации его обращения к математике для прояснения метафизического аргумента встречаются в «Меноне» и «Фаэдо». В первом задается вопрос, можно ли научить добродетели, в последнем – бессмертна ли душа. «Как принято в геометрии», гипотезы высказываются, их выводы анализируются, словно кто-то пытается доказать гипотетическую теорему. Оба аргумента будут подытожены в следующей главе. Второй, возможно, самый доступный пример такого рода очевидности, которая вдохновила Платона изобрести его Вечные идеи.

В случае с Платоном можно проследить неизменную догму, что математика должна формировать основу солидного образования. По возвращении в Афины после своих путешествий в Италию и на Восток Платон остро почувствовал недостаток подготовки мальчиков Греции по арифметике и геометрии по сравнению с глубоким изучением материала по этим полезным предметам египетских школьников. Но он не долго занимался базовой полезностью. Так, в своей «Республике» он описал интенсивное математическое обучение для стражей своего идеального города, потому что, как он утверждал, все ремесла и отрасли знания необходимым образом включают число и расчеты. Отмечая, что существует не так много предметов столь сложных для среднего ума, как математика (в частности, арифметика), он ободрял робких, вселяя в них надежду, что число, когда его изучают ради него самого, становится чарующим и чем более абстрактна арифметика, тем лучше для души. На менее высоком уровне, говорят, арифметика и геометрия незаменимы в военной тактике, позволяя командующему использовать его войска для победы. В данной работе, насколько это касается арифметики, Платон, возможно, предпринял попытку визуализировать квадратные, треугольные и прямоугольные числа пифагорейцев в батальном построении. Этот боевой порядок уже использовался. Но, как и всегда, Платон заканчивал на идеалистической ноте: единственной правдивой и заслуживающей внимания целью изучения математики является продвижение души в направлении Сущего.

Если бы он жил сейчас, Платон не поладил бы с теми психологами, которые утверждают, будто доказали статистически, что нет или почти нет влияния изучения одного предмета на изучение другого и что вера наших отцов в математику как главную дисциплину не имеет под собой почвы. Какое бы допущение ни оказалось доказанным фактом в этой до некоторой степени желчной перепалке по вопросу значимости математики в базовом образовании, не возникает сомнения, что авторитет Платона усилил пифагорейское требование об усилении образования в области азов математики и более двух тысяч лет способствовал сохранению в школах арифметики и геометрии.

Если бы его спросили, что есть друг, он бы ответил: «Второе я». Чистая математика никогда не имела лучшего друга, чем Платон, а Платон – лучшего друга, чем чистая математика.

Глава 20

Обожествленное число

Перейдем к краткому изложению некоторых очевидных свойств, высказанных Платоном в поддержку «математического реализма». Во-первых, некоторые детали технического языка. Поскольку его Идеи оставались для Платона продолжающимися во времени «реальностями», его система стала разновидностью «реализма», несмотря на его убежденность в идеальности «сущностей», то есть Идей, находящихся за пределами прямого опыта и органов чувств.

Краеугольным камнем платоновского математического реализма является доктрина припоминания и размышления. Схематически она представлена в диалоге «Менон». Сократ и Менон спорят о возможности обучения добродетели. Сократ обязался доказать, что «обучению нет места» в том смысле, что один ум сообщает или пересылает знания другому, «только размышление». Он просит Менона, одного из его «бесчисленных сопровождающих лиц», послужить грешным телом в его наглядной демонстрации. Сократу требовался предположительно необразованный, но смышленый мальчик-раб, понимающий по-гречески и «рожденный в доме».

– Прислушайся к вопросам, которые я задаю ему, и определи, учится он у меня или только запоминает, – обращается он к Менону.

Изобретательными наводящими вопросами и простыми геометрическими диаграммами Сократ предлагает мальчику «запомнить» отдельные простейшие математические сведения. Например, он заставляет его посчитать 3 × 3 = 9; 2 × 4 = 8, прочитать на диаграмме, что 8 не является квадратом 3. Его неспособность показать квадратный корень из 2 на диаграмме остановила мальчика. Но он «запомнил», что квадрат удвоенного числа не является дважды квадратом этого числа, и случайно показал корень квадратный из восьми. После дальнейших уговоров Сократ попросил Менона сообщить ему выводы. Они имели большое значение.

Согласно Сократу, опыт показал, что слуга не знал, какие знания хранятся в его голове до поры до времени, пока они не потребуются. Способность мальчика дать правильные ответы на вопросы доказывает, что математические истины, спящие в его мозгу, «были просто разбужены в нем» во время опроса, «как под гипнозом». Далее, «знания, которые он теперь имеет» он должен «или накапливать, или навсегда оставить при себе». Но поскольку мальчик никогда не ходил в школу и не изучал математику, следует отдать предпочтение второй возможности.

Сократ, кажется, сам поверил, что сформулировал свой тезис. Математические знания непреходящи. Души владеют ими до нашего рождения, забывая их при входе в нашу жизнь, но их можно вызвать усилием воли при наличии соответствующей потребности. В частности, математика не плод творения ума, а только «памяти». И следует важный вывод: «…и если истина каждой вещи всегда существует в душе, значит, душа бессмертна. По этой причине веселитесь и взывайте, чтобы достать то, чего вы не знаете или, часом, позабыли». На что Менон (не названный в диалоге скептиком) ответил:

– Я чувствую, что мне нравится то, что вы говорите. Не очень искушенный в правилах поведения, Сократ ответил:

– И мне, Менон, нравится то, что я сказал. Известнейшим образцом доктрины припоминания на чисто интуитивной основе стала «Ода намеку на бессмертие» Вордсворта. Подобно большинству поэтов, подпавших в юности под влияние реализма Платона, Вордсворт не верил, в отличие от верившего Сократа (Платона?), что логические и научные знания были унаследованы вместе с душой. Реализм в понимании Платона исходит от эмоций, а не от разума. Мистику, математику и прочее найти еще можно. Одно из предназначений мистицизма – моментальное знание о реальности прямой интуицией без посредничества чувств или разума. Настоящая мистика не нуждается в доказательствах, как у Сократа. Для него они не нужны, неуместны и бессмысленны.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*