Генри Дьюдени - Пятьсот двадцать головоломок
350. На рисунке показано, как составить квадрат из 20 кусочков.
351. Если ковер разрезать на две части, как показано в случае 1, и сшить куски вместе таким образом, как изображено в случае 2, то получится квадрат. Ширина ступеньки равна 2, а высота 1 м.
352. Согнув листок по серединам противоположных сторон, получим прямые AOB и COD. Произведем также сгибы EH и FG, делящие AO и OB пополам. Перевернем AK так, чтобы K попала на прямую EH в точке E, а затем произведем сгибы через AE и EOG. Аналогично найдем точку H и согнем бумагу вдоль AH и HOF. Произведя сгибы BF, BG, EF и HG, получим искомый правильный шестиугольник EFBGHAE.
353. Сложив AB вдвое, найдите середину E. Согните бумагу вдоль EC. Совместите EB с EC и согните так, чтобы получить EF и FG. Сделайте так, чтобы отрезок CH стал равным отрезку CG. Найдите K — середину отрезка BH и отложите отрезок CL, равный BK. Отрезок KL — сторона правильного пятиугольника. Затем отложите (см. правую часть рисунка) отрезки KM и LN, равные KL, так, чтобы M и N соответственно лежали на BA и CD. Согнув бумагу вдоль PQ, отложите MO и NO, равные KM и LN. Многоугольник KMONL и есть искомый пятиугольник.
354. Соединив между собой края AB и CD, вы можете отметить сгибами средние точки E и G. Аналогичным образом вы можете найти точки F и H, а затем согнуть квадрат EHGF. Далее совместите CH с EH и EC с EH, при этом вы получите точку пересечения 1. Сделайте то же самое с оставшимися тремя углами — сгибы очертят правильный восьмиугольник, который затем можно будет вырезать с помощью ножниц.
355. Сложите квадрат пополам вдоль FE. Загните сторону AB так, чтобы точка B легла на FE, и вы получите точки G и H, через которые можно провести сгиб HGJ. Оставляя точки B и G по-прежнему совмещенными, отогните AB назад на AH, и вы получите прямую AK. Теперь вы можете сложить треугольник AJK — наибольший равносторонний треугольник из всех возможных.
356. Отогнув угол A, найдите точку C, которая делала бы отрезок BC равным отрезку AB, и перегните полоску, как показано в случае 1. Вы получите точку D. Далее согните полоску так, как показано в случае 2, чтобы ее край прошел вдоль AB. Вы получите точку E. Продолжая действовать аналогичным образом (случай 3), вы уложите всю полоску в форме пятиугольника. Это, как мы уже говорили, просто, но вместе с тем интересно и поучительно.
357. Разбейте AB пополам точкой C и проведите прямую CG параллельно BH. Затем найдите точку D (середину AC) и опишите полуокружность DB, пересекающую CG в точке E. Прямая DEF даст положение наикратчайшего сгиба.
358. Перенумеруйте марки, как было показано на исходном рисунке, то есть 1, 2, 3, 4 в первой и 5, 6, 7, 8 во второй строке. Чтобы сложить их в порядке 1, 5, 6, 4, 8, 7, 3, 2 (сверху видна только первая марка), начните следующим образом. Повернув все марки лицом вниз
5678 1234согните полоску так, чтобы марка 7 пришлась на марку 6. Положите 4 на 8 и введите их обе между 7 и 6 так, чтобы эти четыре марки расположились в порядке 7, 8, 4, 6. Теперь поместите 5 и 1 под 6, и все готово.
Добиться, чтобы марки расположились в последовательности 1, 3, 7, 5, 6, 8, 4, 2, труднее, и ее можно легко проглядеть, если кто-нибудь не убежден, что в силу некоторого закона и такое расположение возможно. Сначала согните блок так, чтобы были видны только марки 5, 6, 7, 8, лежащие лицевой стороной кверху. Положите 5 на 6. Теперь между марками 1 и 5 вы можете поместить марки 7 и 8 так, чтобы марка 7 оказалась поверх марки 5, а марка 5, обернувшись кругом, оказалась под маркой 6, и нужный порядок получен.
359. Действуя следующим образом, вы за семь ходов удалите все фишки, кроме 1, которая и сделает последний прыжок: 2—10, 4—12, 6—5, 3—6, 7—15, (8—16, 8—7, 8—14, 8—3), (1—9, 1—2, 1—11, 1—8, 1—13, 1—4).
360. «Девятка» последовательно перепрыгивает через 13, 14, 6, 4, 3, 1, 2, 7, 15, 17, 16, 11. Затем 12 перепрыгивает через 8, 10 — через 5 и 12, а 9 — через 10.
361. Составьте за 9 ходов стопку из пяти фишек (от 1 до 5) в квадрате B. За 7 ходов постройте стопку из четырех фишек (от 6 до 9) в квадрате C. Образуйте стопку из трех фишек (от 10 до 12) в D за 5 ходов. Поместите в E стопку из двух фишек (13 и 14) за 3 хода. Переместите одну фишку (15) в F за 1 ход. Переместите 13 и 14 в F за 3 хода, 10 и 12 в F за 5, с 6 по 9 за 7 и с 1 по 5 за 9 ходов. Всего получится 49 ходов.
362. Передвигайте фишки в следующем порядке: 12, 8, 4, 3, 2, 6, 10, 9, 13, 15, 14, 12, 8, 4, 7, 10, 9, 14, 12. 8, 4, 7, 10, 9, 6, 2, 3, 10, 9, 6, 5, 1, 2, 3, 6, 5, 3, 2, 1, 13, 14, 3, 2, 1, 13, 14, 3, 12, 15, 3 — всего 50 ходов.
[Если фишки 14 и 15 расположены сначала в правильном порядке, то магический квадрат можно получить за 37 ходов: 15, 14, 10, 6, 7, 3, 2, 7, 6, 11, 3, 2, 7, 6, 11, 10, 14, 3, 2, 11, 10, 9, 5, 1, 6, 10, 9, 5, 1, 6, 10, 9, 5, 2, 12, 15, 3. — М. Г.]
363. Одну дополнительную фишку следует поместить в четвертом квадрате второго (сверху) ряда, а другую — во втором квадрате четвертого ряда. Головоломка оказывается столь просто разрешимой, что не требуется даже перечислять необходимые ходы.
364. Наименьшее число ходов 24. Действовать нужно следующим образом. (Необходимо всего лишь указать буквами, из какого круга в какой перемещается фишка. За один раз можно перемещать лишь одну фишку.) Итак, E в A, E в B, E в C, E в D, B в D, E в B, C в B, A в B, E в C, E в A, B в A, C в E, B в C, A в C, B в A, C в B, C в A, B в A, E в C, E в B, C в B, D в E, D в B, E в B — всего 24 хода.
365. Нарисуйте схему путей, как показано на рисунке, возьмите 5 фишек, обозначенных X, L, R, A и B. Паровозы — это L и R, два вагона справа — A и B. Три вагона слева разделять не следует, поэтому мы обозначим их X. Тупик обозначен через S. Далее действуйте следующим образом: R налево, R в S, XL направо, R налево, XLA налево, L загоняет A в S, L налево, XL направо, R к A, RA налево, XLB налево, L направляет B в S, L налево, LX направо, RA к B, RAB прямо. Всего получилось 14 ходов, поскольку в первом и третьем ходах (R налево и XL направо) не происходит изменения направления. За меньшее число ходов задачу решить нельзя.
366. Меняйте пары местами следующим образом: (1—7, 7—20, 20—16, 16—11, 11—2, 2—24), (3—10, 10—23, 23—14, 14—18, 18—5), (14—19, 19—9, 9—22), (6—12, 12—15, 15—13, 13—25), (17—21). Теперь все фишки правильно размещены за 19 ходов. Внутри скобок заключены полные циклы. Выпишите числа в исходном порядке, а под ними числа в правильном порядке так: