Владимир Левшин - Путешествие по Карликании и Аль-Джебре
— Верно. Давайте дальше.
Тут я, как назло, запнулся. Ни туда ни сюда.
— Ладно уж, — сказал Составитель, — придётся помочь. Выясним, какую часть котлована выроет каждый экскаватор за один час. Для этого условимся, что объём всего котлована равен единице.
— И что из этого следует? — спросил Сева.
— А из этого следует, — догадался я, — что первый экскаватор за час выроет одну четверть котлована, второй — одну треть, третий — одну двенадцатую.
— Ну конечно! — обрадовался Составитель. — Какую же часть они выроют за час, если будут работать все вместе?
На этот раз ответил Сева:
— Вот какую:
1/4+1/3+1/12
— Молодец! А за икс часов?
— А за икс часов они выроют в икс раз больше, — сказала Таня. — Это и будет весь котлован, объём которого мы приняли за единицу.
Так у нас получилось уравнение:
x(1/4+1/3+1/12)=1
Ну а решить такое уравнение было уже совсем легко:
8/12x = 1
Значит, Икс равен двенадцати восьмым, или
х = 3/2
Выходит, что три экскаватора, работая вместе, выроют котлован за полтора часа.
Неловко об этом говорить, но мне было очень приятно, когда маска с Икса упала и он стал нас благодарить.
Карликан заторопился к своим экскаваторам, а Составитель тут же предложил решить ещё одну задачу, точно такую же, но… Что это за «но», ты сейчас поймёшь.
— Признаться, надоели мне такие уравнения, — сказал Составитель, — слишком часто приходится их составлять. Везде идут стройки, везде роют котлованы. Пора бы уж сразу найти один ответ на все подобные вопросы. Ведь мы как-никак живём в Аль-Джебре…
— И потому должны упрощать и обобщать, — докончил Сева.
— Уж конечно! Не хотите ли вместе со мной вывести такое единое решение?
Мы молча кивнули, и Составитель начал:
— Так как экскаваторы бывают разных мощностей, то пусть первый из них роет котлован за а часов, второй — за b часов, ну а третий, допустим, за с часов. Спрашивается, за сколько часов выроют они котлован, если будут работать вместе?
— По-моему, — сказал я, — решение должно быть таким же, как и в предыдущей задаче. Только та задача была в числах, а мы её изобразим буквами. Снова примем за Икс число часов, необходимое, чтобы закончить работу, а всю работу — за единицу.
— Так-так-так, — подбадривал Составитель.
Теперь рассуждала Таня:
— Очевидно, первый экскаватор совершит за час 1/a часть работы, Это, наверное, читается так: одну атую часть работы?
— Хорошо, хорошо.
— Тогда второй, — сказал Сева, — за час совершит одну бэтую: 1/b, а третий одну цэтую: 1/c часть работы. А все вместе они выроют за час сумму этих дробей:
1/a+1/b+1/с.
Теперь нетрудно составить уравнение, ведь за икс часов они выполняют работу в икс раз большую:
x(1/a+1/b+1/с).
И всё это должно быть равно единице:
x(1/a+1/b+1/с)=1
— Вот вы и составили уравнение, — похвалил Составитель.
— Теперь приведём подобные, — сказал Сева. Вспомнил, наверное, как он недавно оплошал.
— Нет, — возразил Составитель, — здесь я не вижу никаких подобных. Просто надо сложить три дроби, которые стоят в скобках. Для этого приведём их к общему знаменателю и введём дополнительные множители у каждой дроби.
— Это мы знаем, — вмешалась Таня и тут же написала:
или
— Вот какой огромный коэффициент оказался у Икса! — заметил Сева. — С таким провожатым ничего не страшно.
— Что же остаётся сделать, чтобы найти Икс? — спросил Составитель.
— Разделить правую часть уравнения — единицу — на этот коэффициент, — ответила Таня.
С этим она справилась быстро:
Икс подошёл к Тане и поклонился, помахав вместо шляпы чёрной маской. Д’Артаньян, да и только!
— Вот вам и уравнение, пригодное для любых трёх экскаваторов, — сказал напоследок Составитель. — Может быть, хотите проверить?
Тут уж пришёл на Севину улицу праздник. Подставлять — его любимое занятие. Вместо а, b и с он подставил числа из предыдущей задачи — 4, 3 и 12:
Сократил дробь и получил: x=3/2
— Упрощение и обобщение! Упрощение и обобщение! — приговаривал он, похлопывая себя по животу, словно только что съел что-нибудь вкусное.
Потом он придумал другие числа и опять другие. И каждый раз, вычислив Икс, выкрикивал те же слова и снова хлопал себя по животу. Забыл он, что ли, что теперь в самый раз разобраться в задаче зелёного стручка и попробовать составить уравнение самим?! Пришлось обратиться к талисману. В последнее время он что-то совсем притих — лежит себе в кармане и помалкивает. Видно не считает нужным вмешиваться. Я вынул его и понес к самому Севиному носу. Увидел стручок, Сева снова хлопнул себя — на этот раз по лбу — и через насколько минут мы уже сидели на скамейке в Парке Науки и Отдыха.
Ну вот всё пока. Наберись терпения и подожди следующего письма. Так всегда делают в журналах — прерывают рассказ на самом интересном месте и пишут: «Продолжение следует».
Олег.
Пончик на крючке
(Нулик — отряду
Дорогие ребята! Вся наша школа страшно волнуется. Как-то вы раскроете тайну Чёрной Маски? Но больше всех переживаю я: может быть, сейчас вы уже расколдовываете моего незнакомца. Когда чего-нибудь ждёшь, время тянется ужасно медленно. Прямо не знаешь, куда деваться. Вот мы и решили обмануть время и чем-нибудь заняться.
А так как на уме у нас только составление уравнений, мы захотели сами придумать какую-нибудь задачу.
Эту мысль нам подсказал Пончик. Я с ни очень подружился. Не могу даже подумать, что скоро нам придётся расстаться!
Так вот, я заметил, что путь в Аль-Джебру и обратно занимает у Пончика всё больше времени. Каждый раз он все дольше задерживается в дороге с письмами. Наверное, потому, подумал я, что вы постоянно продвигаетесь вперёд. Последний раз Пончик вернулся только через тридцать четыре часа.
Мы решили выяснить, как далеко вы ушли. Расставили наблюдателей с часами, и они посчитали, что Пончик мчится прямо-таки с космической скоростью: двенадцать километров в час.
Потом мы стали думать, сколько времени он проводит у вас в Аль-Джебре. Наверное, столько же, сколько и у нас. Минут сорок.
Теперь слушайте, как мы составили уравнение.
Во-первых, что мы ищем? Мы ищем расстояние. Его-то и приняли за икс. А так как Пончик бежит со скоростью двенадцать километров в час, то на путь к вам он затратит x/12 часов или 1/12x часов. Стало быть, на два конца уйдёт вдвое больше времени то есть 2/12x часов.
Вот сколько часов займёт всё его путешествие.
Ерунда какая-то, — сказал один Нулик. Прежде считали в часах, а потом прибавили 40 минут. Так нельзя. Выбирайте что-нибудь одно: либо часы, либо минуты.
Пришлось поставить вопрос на голосование. Большинство было за то, чтобы превратить минуты в часы.
В часе 60 минут. Значит, 40 минут — это 2/3 часа. Подставили дробь в наше выражение:
2/12x + 2/3
Так мы записали, сколько времени путешествовал Пончик. А путешествовал он, как известно, 34 часа. Вот и получилось уравнение:
2/12x + 2/3 = 34
Теперь надо было его решить. Вроде дело нехитрое: бери карандаш, бумагу и решай на здоровье! Но нас это не устраивало. Мы непременно хотели решать, как в Аль-Джебре. Подъёмным краном. Для этого у нас было всё — и крановщики, и регулировщики. Не хватало только крана. Тут все приуныли. Но я всё-таки нашёл. Не кран, конечно, а большую удочку с леской и крючком. При желании она вполне сойдёт за подъёмный кран.
Ну, все опять повеселели и стали вырезать из картона цифры и букву икс. А потом сделали для этого картонного Икса маску из чёрной бумаги.
Когда всё было готово, Нулик-Регулировщик взмахнул флажком, а я взял удочку и скомандовал: