KnigaRead.com/

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Сергей Бобров, "ВОЛШЕБНЫЙ ДВУРОГ" бесплатно, без регистрации.
Перейти на страницу:

Тогда Знаменатель пожал плечами и отпустил человечка с надписью "3", и тот побежал вдоль ряда. На его месте появился другой - худой, с надписью "1", и каждый из членов прогрессии, мимо которого он пробегал, моментально сменялся другим, так что, когда человечек, запыхавшись, закончил свои бег и стал рядом, вне скобок, получилось:

3•(1 + 2 + 4 + 8 + 16 + 32 + 64).

"Ага! - подумал Илюша. - Значит, он их все сложил, а первый член вынес за скобку".

Человечек Знаменатель утвердительно кивнул Илюше.

Мальчик подумал, что этот безмолвный учитель, который обладает столь тонким слухом, что слышит даже и то, чего ты не произносил, - довольно интересная новость!

Тут же цифры на жилетках человечков заменились буквами:

a1(1 + q1 + q2 + q3 + q4 + q5 + q6 + ... + qn-2 + qn-1).

"Правильно! - решил про себя Илюша. - Просто он заменил цифры алгебраическими обозначениями. Тут в конце стоят qn-2 и qn-1 - в том смысле, что прогрессию по тому же правилу можно тянуть вправо до любого члена. А почему членов у нас n, а старший показатель q не n, а (n-1)? Ах да!

Ведь впереди есть еще единица, то есть q°. Значит, один и еще (n-1) - вот и выйдет опять ровно n. Ясно! Значит, в сумме всякой геометрической прогрессии Можно взять первый член за скобку, а в скобках останутся степени знаменателя".

Человечек Знаменатель глянул мельком на Илюшу и, заметив, что тот все понял, даже не счел нужным кивнуть ему.

- 193 -

Затем он поднял свой длиннейший указательный палец правой руки вверх, покачал им торжественно, как бы приглашая Илюшу отнестись повнимательнее к тому, что он сейчас ему покажет. После этого он взял три первых члена из скобок, поставил их перед Илюшей и снова заключил в скобки.

(1 + q + q2)

Затем Знаменатель показал Илюше на эту тройку знаков и выразил на своем лице некое недоумение, как бы приглашая Илюшу объяснить: что он перед ним поставил? Илюша посмотрел на него, потом на троих человечков и ничего не мог придумать. Знаменатель недовольно нахмурился, сделал знак человечкам, и тогда первый и третий поменялись местами. Знаменатель снова сделал недоуменную мину и опять показал Илюше на тройку приятелей. Илюша посмотрел. Перед ним стояло:

(q2 + q + 1)

Это было то же самое, только два члена выражения поменялись местами.

"Э! - подумал Илюша. - Да это просто неполный квадрат суммы!"

Не успел он это подумать, как вдруг откуда-то раздалось ядовитое хихиканье, и слишком хорошо ему известный голосок вездесущего Уникурсала Уникурсалыча произнес очень отчетливо:

- Ах, какой догадливый мальчик! А до того, как переставили, это, значит, не было неполным квадратом суммы? Вон как!

Илюша густо покраснел, хотел было что-то ответить, но не мог придумать ничего дельного, а человечек Знаменатель радостно закивал ему в знак согласия, немедленно вычел из самого себя единицу, залез в скобки, и перед Илюшей появилось:

(q2 + q + 1) (q - 1) = ?

"Неполный квадрат суммы, - подумал Илюша, - если его умножить на разность первых степеней, будет равен разности кубов. Все ясно. Но к чему это он ведет?"

Человечек Знаменатель хитро подмигнул Илюше, как бы говоря: "Сейчас узнаешь!" - и перед мальчиком появилось:

(q2 + q + 1) (q - 1) = q3 - 1.

"Ну конечно!" - подумал Илюша. Затем скобки немного раздвинулись, в них забрался еще человечек. Теперь получилось:

(q3 + q2 + q + 1) (q - 1) = q4 - 1.

- 194 -

"Ишь ты! - подумал Илюша. - Как же так выходит?" Но когда он попробовал в уме перемножить скобки левой части, то убедился, что как раз так и получается. "Действительно, - подумал он, - когда я умножу q3 на q, то выйдет q3; когда умножу 1 на (- 1), то получится -1, а все остальное взаимно уничтожается, потому что от умножения на q всех членов, кроме первого, я получу q3, q2, q и все будут с плюсом, от умножения на (-1) всех членов, кроме последнего, я получу те же q3, q2, q, но все будут с минусами. Значит, только и останется q4 и - 1. Все верно!"

Тогда в скобки влез еще один человечек, и вышло:

(q4 + q3 + q2 + q + 1) (q - 1) = q5 - 1.

Тут Илюша, рассуждая совершенно таким же образом, пришел снова к заключению, что и это тоже правильно.

А затем человечки стали так:

(qn-1 + qn-2 + ... + q4 + q3 + q2 + q + 1) (q - 1) = qn - 1.

"Так, - подумал Илюша. - Тут начинается с qn-1. To-есть он хочет сказать, что это правило годится для любой степени".

Подумав немного, Илюша убедился, что Знаменатель совершенно прав.

Вслед за этим его новый приятель быстро схватил скобочку (q-1) и перенес в знаменатель правой части. Получилось:

qn-1 + qn-2 + ... + q4 + q3 + q2 + q + 1 = (qn - 1) / (q - 1).

Затем человечки быстро поменялись местами, и вышло:

1+ q + q2+ q3 + q4+...+qn-2+ qn-1 = (qn - 1) / (q - 1).

Теперь человечек Знаменатель изобразил на своем личике самую приятную улыбку и снова показал получившуюся формулу Илюше, как бы приглашая его полюбоваться тем, что получилось.

Илюша внимательно посмотрел на формулу и подумал:

"Значит, налево стоит сумма геометрической прогрессии, у которой первый член равен единице. И теперь он получил выражение для этой суммы".

Знаменатель улыбнулся и привел двух человечков, у которых на жилетках стояла цифра "3". Затем между ними возник знак равенства, а у левого человечка тройка заменилась буквой, и вышло:

a1 = 3.

"Так! - подумал Илюша. - Ну, я уж это знаю: первый член равен тройке".

- 195 -

Тогда у обоих человечков на жилетках появились одинаковые буквы. Человечек Знаменатель поставил одного к левой части своего равенства, а другого - к правой, и вышло:

a1(1+ q + q2+ q3 + q4+...+qn-2+ qn-1 ) = a1 (qn - 1) / (q - 1).

"Обе части он умножил на первый член прогрессии, - подумал Илюша. - Это можно, конечно. Ну, и что ж у нас теперь вышло? Эх! Да это теперь как раз и получилась сумма всей прогрессии!"

В это время появилась какая-то длинная пожилая дама, которая взглянула на Илюшу с возмущением и пожала в ужасе плечами. По-видимому, это была очень нервная особа, потому что человечек Знаменатель обращался с ней до крайности предупредительно. Он подвел ее к своему равенству.

Рыжая дама горестно вздохнула, и на груди ее смутно вырисовалась буква S. "Сумма!" - подумал Илюша, а человечек Знаменатель сочувственно кивнул ему, как бы говоря:

"Пренеприятная особа! Ну, да ведь ничего не поделаешь!"

И получилось следующее равенство:

S = a1(1+ q + q2+ q3 + q4+...+qn-2+ qn-1 ) = a1 (qn - 1) / (q - 1).

= а, с чем Илюша не мог не согласиться, а затем вся серединка формулы исчезла, и появилось окончательное выражение суммы:

S = a1 (qn - 1) / (q - 1)

- 196 -

Илюша громко и отчетливо произнес:

- Для того чтобы найти сумму геометрической прогрессии, нужно первый член прогрессии умножить на дробь, числитель которой равен разности между знаменателем прогрессии в степени, равной числу членов, и единицей, а знаменателем этой дроби является разность между знаменателем прогрессии и единицей.

Затем человечек Знаменатель разорвал свою дробь надвое:

S = a1 [qn / (q - 1) - 1 / (q - 1)]

а потом открыл скобки:

S = a1qn / (q - 1) - a1 / (q - 1)

А вслед за тем Знаменатель еще раз поглядел на Илюшу и важно поклонился ему.

На лице его было написано полное удовлетворение всем происшедшим.

Рыжая дама сжала свои костлявые пальчики и смиренно посмотрела вверх. Илюша тоже машинально поглядел вверх и вдруг увидел, что на маленьком парашютике спускается крохотный, с кулачок, плюшевый Мишка.

Мишка спустился, встал на задние лапки и сказал Илюше, что его зовут Эн.

- Значит, ты число членов прогрессии?

- Угадал! - пискнул Мишка.

Вслед за этим началось акробатическое представление. Рыжая дама, стараясь не глядеть на Илюшу, стала слева. За ней в воздухе повис знак равенства. Затем Знаменатель повесил в воздухе две большие дробные черты, между ними приладил длинный тонкий минус. При этом он вдруг три раза щелкнул пальцами и превратился из одного человечка Знаменателя в троих, совершенно одинаковых. Один из них забрался на первую из двух дробных черт, рядом с первым членом прогрессии.

- 197 -

Плюшевый Мишка вдруг страшно оживился, прыгнул, точно кузнечик, и прямо с пола перелетел ему на тулью цилиндра. Получилась снова уже известная Илюше формула:

S = a1qn / (q - 1) - a1 / (q - 1)

Буква n, которую Мишка столкнул своей плюшевой ланкой с цилиндра человечка Знаменателя, кое-как приподнялась с пола и жалобно пропищала:

- Я буду больше единицы!

В ответ на это плюшевый Мишка, очень удобно примостившийся на краю цилиндра Знаменателя, начал пыхтеть и понемножку толстеть, а дама начала понемногу расти вверх.

Илюша подумал: "Эн увеличивается, и сумма растет.

Ну да, так и должно быть, конечно! Чем больше будет число членов, тем и сумма будет больше. Ясно!"

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*