KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Джон Дербишир, "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." бесплатно, без регистрации.
Перейти на страницу:

И в-третьих — сколь бы тривиальным ни казалось такое обстоятельство, подобные вещи некоторым образом откладываются в людских головах, — имелось чистое совпадение, определяемое тем, что идея о ТРПЧ зародилась в конце одного столетия (Гаусс, 1792), а доказана теорема была в конце следующего (Адамар и де ля Валле Пуссен, 1896). И как только с этой теоремой дело было решено, внимание математиков переключилось на Гипотезу Римана, которая и занимала их в течение всего следующего столетия — столетия, которое завершилось, так и не принеся никакого доказательства. И это подтолкнуло любознательных исследователей широкого профиля к написанию книг о ТРПЧ и Гипотезе в начале очередного столетия!

Чтобы наполнить сформулированные выше пункты социальным, историческим и математическим содержанием, я кратко расскажу о Жаке Адамаре; мой выбор определен отчасти тем, что среди многих действующих лиц он играл наиболее важную роль, а отчасти тем, что для меня он — привлекательная и располагающая к себе личность.


IV.

В политическом отношении XIX столетие выдалось для Франции не очень счастливым. Если считать вместе со ста днями Наполеона (а также если простить мне незначительные ошибки округления), то с 1800 по 1899 год государственное устройство этой древней нации выглядит следующим образом.

• Первая республика (41/2 года)

• Первая империя (10 лет)

• Реставрация монархии (1 год)

• Реставрация империи (3 месяца)

• Ререставрация монархии (33 года)

• Вторая республика (5 лет)

• Вторая империя (18 лет)

• Третья республика (29 лет)

И даже те 33 года монархии прерывались революцией и сменой династии.

Для французского народа во второй половине столетия величайшей национальной трагедией было поражение, которое французская армия потерпела от Пруссии в 1870 году; затем последовали осада Парижа пруссаками зимой 1870/71 года и мирный договор, по которому Пруссии были уступлены две провинции и выплачена колоссальная денежная контрибуция. Сам этот договор вызвал краткую, но ожесточенную гражданскую войну. Разумеется, последствия всего этого для Франции были огромны. Нация вступила во Франко-прусскую войну империей, а вышла из нее республикой.

Особенно оказалась затронута французская армия. В течение всей оставшейся части столетия, да и позднее, этому гордому институту пришлось не только терпеть унижение из-за поражении 1870 года; в армии воплотились и все надежды нации на реванш и возвращение потерянных земель. Кроме того, армия стала оплотом старомодного французского патриотизма: молодые люди из аристократических, католических и богатых буржуазных семей массово шли служить офицерами. Это склоняло офицерский корпус к консерватизму в старом французском духе «трона и алтаря», до некоторой степени изолируя его от основного направления, в котором развивалась французская жизнь в эти десятилетия. А жизнь шла по направлению к непоседливой и открытой торговой и промышленной республике, занимавшей ведущее положение в искусствах и науках, являвшей средоточие блеска, остроумия и веселья, — к восхитительной, блистательной Франции времен Belle Epoque[82], одной из высших точек в развитии западной цивилизации.

Жак Адамар ребенком пережил осаду Парижа, а дом, который занимала его семья, сожгли во время гражданской войны. Родился он в декабре 1865 года во франко-еврейской семье. Его отец преподавал в старших классах школы, а мать давала уроки игры на фортепиано. (Среди ее учеников был Поль Дюка, написавший симфоническую поэму «Ученик чародея», столь хорошо знакомую поклонникам Диснея.[83]) После получения диплома и недолгого преподавания в школе Адамар в 1892 году защитил диссертацию и в том же году женился. В 1893 году они с женой переехали в Бордо, где он получил должность преподавателя в университете. Их первый ребенок, Пьер, родился в октябре 1894 года, и они занялись созданием одной из тех любящих и деятельных буржуазных семей, где все тесно связаны друг с другом и где каждому полагается играть на музыкальном инструменте и выбрать себе карьеру в бизнесе или науке или же стать врачом или каким-нибудь другим специалистом.

В те дни, как и в наше время, Франция была высокоцентрализованным государством. Получить преподавательскую должность в Париже было необычайно сложно, и подразумевалось, что молодые ученые должны прежде в течение нескольких лет пройти стажировку в провинции. Для Адамара парижский шанс открылся в 1897 году. В том году он вернулся в столицу, оставив свое профессорство в Бордо — его повысили от преподавателя до полного профессора всего за два года, — и стал доцентом в Коллеж де Франс, что представляло собой продвижение с точки зрения престижа — т.е. шаг вверх.

Те шесть лет с 1892-го по 1897-й заложили основу карьеры и славы Адамара. Он был математиком широкого профиля и получал оригинальные результаты в нескольких различных областях. Как правило, студенты, специализирующиеся по математике, впервые встречают его имя в связи с теоремой о трех окружностях в теории функций комплексной переменной — результат, полученный Адамаром в 1896 году; о нем можно прочитать в любой хорошей энциклопедии по математике.[84]

Там будет написано, что Адамар был последним из универсальных математиков — из тех, другими словами, кто охватывал весь предмет целиком, — позже этот самый предмет разрастется до такой степени, что это станет просто невозможно. Однако то же самое будет сказано и о Гильберте, Пуанкаре, Клейне и, наверное, еще об одном или двух математиках того периода. Я не знаю, кто больше заслуживает звания универсального математика, хотя и подозреваю, что правильный ответ — Гаусс.


V.

Получение доказательства ТРПЧ относится к бордоскому периоду жизни Адамара. Отступим чуть в сторону и взглянем на непосредственное математическое окружение, в котором это доказательство было получено.

Главной фигурой во французской математике того времени был Шарль Эрмит (1822-1901) — профессор анализа в Сорбонне до своего ухода на пенсию в 1897 году. Одно из его творений будет играть роль в нашей истории (глава 17.v).

Начиная с 1882 года Эрмит вел математическую переписку с более молодым математиком, голландцем по имени Томас Стилтьес.[85] В 1885 году Стилтьес опубликовал в Comptes Rendus[86] заметку, где утверждал, что доказал нашу теорему 15.1 — результат более сильный, чем Гипотеза Римана, из которого, если Стилтьес действительно его доказал, следует справедливость Гипотезы (однако неверность его не будет опровержением Гипотезы, см. главу 15.v). Однако в той заметке Стилтьес не привел доказательства. Примерно в то же время он написал Эрмиту и в письме повторил свое утверждение, однако добавил: «Мое доказательство слишком сильно закручено; я попробую упростить его, когда вернусь к работе над этими вопросами». Стилтьес был честным человеком и серьезным, уважаемым математиком — его именем назван один вид интеграла. Ни у кого не было причин сомневаться, что у него действительно имелось доказательство, Стилтьес наверняка и сам так считал.

Тем временем работу Римана 1859 года тщательно исследовали и придали его рассуждениям более аккуратный вид. Удостоенный премии результат Адамара также представлял собой значительный шаг в этом направлении. Далее, в 1895 году в Берлине (Германия в то время была империей, правил которой кайзер Вильгельм I) немецкий математик Ханс фон Мангольдт расчистил значительную часть еще не пройденных дебрей и доказал основной результат Римана о связи функции π(x), подсчитывающей количество простых чисел, с нулями дзета-функции.

Оставались только два ключевых вопроса: Гипотеза и ТРПЧ. К этому времени все заинтересованные наблюдатели понимали, что Гипотеза — более сильное утверждение. Если бы Гипотезу (молоток) удалось доказать, то ТРПЧ (орех) была бы получена как следствие, без всяких дополнительных усилий. Но ТРПЧ можно было установить и исходя из более слабых результатов, без привлечения Гипотезы, причем доказательство ТРПЧ не означало бы справедливости Гипотезы.

Итак, что было делать математику, если учесть широкую распространенность убеждения, что Стилтьес разделался как с первой, так и со второй проблемой? Начать работать над доказательством более слабого результата — путь к которому благодаря работе по расчистке, которую провели Адамар и фон Мангольдт, был теперь довольно ясен? Но стоило ли затрудняться из-за этого, если более сильный результат Стилтьеса по поводу Гипотезы может появиться в тот момент, когда работа сделана лишь наполовину? С другой стороны, к середине 1890-х годов с момента сделанного Стилтьесом заявления прошло 10 лет, и многих, должно быть, начали одолевать сомнения. Эти сомнения никак не касались личности Стилтьеса; в математике нередки случаи, когда математик верит, что доказал некий результат, а потом, просматривая доказательство, обнаруживает (или, чаще, обнаруживают его коллеги), что в нем содержится логический изъян. Так случилось с первым доказательством Последней теоремы Ферма, данным Эндрю Уайлсом в 1993 году. Такое происходит при более драматических обстоятельствах с героем, от лица которого ведется повествование в написанном в 2000 году романе Филиберта Шогта «Дикие числа». Никто не стал бы думать о Стилтьесе хуже, если бы с ним случилось то, что сплошь и рядом случалось в карьерах математиков. Но где все же это доказательство?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*