Роза Мария Рос - Мир математики. т.30. Музыка сфер. Астрономия и математика
Рассчитать Δβ можно разными способами:
1. Простейший способ — непосредственное измерение по рисунку, приведенному на странице 159: достаточно рассмотреть отношение диаметра Солнца D на рисунке и угловой размер Солнца. Угловой размер Солнца равен 30 минутам дуги, выраженным в радианах. Имеем:
2. Также можно измерить хорды окружности на рисунке. Этот способ точнее, так как измерить длины хорд A1A2 и В1В2 всегда можно с большей точностью, чем расстояние между этими хордами А’В’.
Рисунок позволяет связать длины хорд A1A2 и В1В2 с расстоянием между ними, А’В’.
По теореме Пифагора для треугольников SB’В1 и SA’X1 получим
3. Вместо расстояний можно отсчитывать время. Достаточно рассмотреть соотношение
где tA и tB — время прохождения A1A2 и В1В2. Обозначив через t0 гипотетическое время транзита по всему диску Солнца, через t’ — время, соответствующее Δβ, установим соотношение:
Использовать временные интервалы вместо расстояний следует с осторожностью. Как показано на следующем рисунке, следует различать время внешнего касания (C1 и С4) и внутреннего касания (С2 и С3) Венеры с диском Солнца. Внутренние касания всегда можно определить точнее, несмотря на искажения, вносимые эффектом черной капли. По этой причине в расчетах учитываются только моменты внутреннего касания.
Наиболее точно можно определить моменты внутреннего касания С2 и С3, поэтому именно они используются в расчетах.
На основании результатов наблюдений транзита Венеры 1769 года, полученных в Вардё и Папеэте, получим следующие значения (с учетом того, что расстояние АВ по прямой равно 11425 км).
Расстояние от Земли до Солнца, равное 1 астрономической единице, вычисленное тремя описанными выше методами.
Можно видеть, что точность результатов достаточно высока, если принять во внимание простоту использованных методов. Сегодня расстояние от Земли до Солнца, определяемое как 1 астрономическая единица, принимается равным 149,6∙106 км. Следует отметить, что точность второго результата, полученного методом измерения хорд, выше, так как измерить хорды можно с большей точностью, чем непосредственно Δβ. Последний метод, в котором учитывается время прохождения, представляет интерес, поскольку позволяет провести более четкую аналогию с современными методами. Однако погрешность при этом выше, так как метод требует использования вспомогательной гипотезы, согласно которой скорость движения Венеры во время прохождения по диску Солнца постоянна в течение всего транзита.
Расстояние от Земли до Солнца, вычисленное в XVIII веке, заключалось на интервале от 145 до 155 млн километров. По результатам наблюдений за прохождением Венеры в XIX веке этот результат был улучшен, а максимальная точность была достигнута в 2000 году с помощью радара. Сегодня расстояние от Земли до Солнца принимается равным 149,597870691∙106 км.
Глава 5. Определение часовых линий наклонных солнечных часов
Солнечные часы, как правило, устанавливаются на стенах зданий. Если стена здания не расположена точно вдоль линии восток — запад, часы обычно направлены в сторону горизонта, по которому движется Солнце в течение дня. Чтобы провести часовые линии на циферблате вертикальных неориентированных солнечных часов (они называются наклонными), нужно знать угол, под которым располагается стена. Далее мы объясним, как можно вычислить этот угол а — азимут стены. Пока что будем предполагать, что угол а известен.
Часовые линии в этом случае строятся так же, как и в других разновидностях солнечных часов, то есть путем проецирования часовых линий экваториальных, горизонтальных и вертикальных часов на плоскость циферблата наклонных часов, как показано на иллюстрации. Следует напомнить, что линия, указывающая полдень на циферблате любых вертикальных часов, совпадает с направлением отвеса, закрепленного в той же точке, что и гномон. Гномон наклонных часов, как и любых других солнечных часов, направлен вдоль оси вращения Земли.
Спроецировав часовые линии экваториальных солнечных часов на плоскость циферблата наклонных часов, получим, что ctg γ = sin a ctg Н sec ф — cos a tg ф. При Н =15°, следовательно, γ будет углом, под которым расположена часовая линия, указывающая 11 и 13 часов. При Н = 30° угол γ укажет расположение часовой линии 10 и 14 часов и так далее до линии 6 и 18 часов.
По теореме синусов для треугольника CFA имеем:
где sin(180 — (а — α)) = sin(a — α) с учетом того, что а и α отсчитываются в противоположных направлениях. По формуле sin(a — α) = sina cosα — cosa sinα имеем:
Однако в треугольнике ABC, определяемом осью мира, tg ф = ВС/АС, а в треугольнике BFC на плоскости циферблата наклонных часов tg γ = CF/BC. Упростив эти выражения, получим tg γ tg ф = CF/AC, откуда следует:
Как мы уже указывали, для горизонтальных часов выполняется равенство tg α = tg Н sin ф, откуда следует:
Умножив на tg ф, получим формулу, определяющую положение часовых линий на циферблате наклонных часов:
где γ — угол между линией, указывающей 12 часов, и искомой часовой линией, Н = 15°, 30°, 45°… соответственно, как показано на рисунке выше.
Чтобы определить азимут стены, нужно вбить в нее гвоздь, подвесить на него веревку с грузом и использовать пузырьковый уровень, угольник и транспортир, расположив их так, как показано на следующей странице. Измерения нужно производить в солнечный полдень. Азимут стены а — это угол между линией, указывающей на юг, и перпендикуляром к стене. Следует напомнить, что при прохождении Солнца через меридиан места (направление север — юг) тень веревки должна падать строго вертикально.
Определение азимута стены а.
Глава 6. Определение кривой блеска переменной звезды
Чтобы построить кривую блеска переменной звезды, необходимо произвести множество наблюдений. Каждая точка кривой блеска имеет две координаты (р, m), где р — фаза, m — видимая величина.
Кривая блеска Дельты Цефея.
При каждом наблюдении нужно определить видимую величину переменной звезды путем сравнения с двумя другими звездами А и В. Этот метод называется методом Аргеландера. Очевидно, что звезды А и В, фигурирующие в сравнении, должны быть постоянными, а их величина должна быть известна. Желательно, чтобы эти звезды имели тот же цвет, что и рассматриваемая звезда. Обозначим видимые величины этих звезд через mА и mB, где mА > mB. Введем обозначения Аа и ЬВ, где значения а, Ь = 1, 2, 3, 4 и 5 и определяются по следующим правилам:
— А1: имеются некоторые сомнения относительно блеска звезды А и переменной звезды (они почти одинаковы);
— А2: имеются некоторые сомнения, однако звезда А ярче, чем переменная звезда;
— АЗ: величины звезд сопоставимы, но звезда А очевидно ярче;
— А4: сразу же видно, что звезда А ярче;
— А5: звезда А, вне всяких сомнений, ярче;
— 1В: имеются некоторые сомнения относительно блеска звезды В и переменной звезды (они почти одинаковы);
— 2В: имеются некоторые сомнения, однако звезда В не столь яркая, как переменная звезда;