Алексей Лосев - Хаос и структура
Второй большой отдел дифференциального исчисления—это учение о рядах. Положение этого отдела в системе анализа— вполне специфическое. Ряды, конечно, нельзя помещать где попало. Логическое место их определяется тем основным обстоятельством, что ряд представляет собой инобытие производной. Если производная является образом пребывания функции в инобытии, то ряд является образом пребывания самой производной в инобытии.
Если производная—тезис, то ряд есть антитезис или, вернее, такой антитезис, который воплощает в себе в инобытийном[231] порядке тезис, производную. Чтобы это понять с полной четкостью, необходимо проанализировать диалектически хотя бы один какой–нибудь ряд. Для такого примера мы и возьмем простейший ряд—ряд Маклорена.
Этот ряд—
состоит из двух элементов, вдвинутых один в другой, — именно из ряда последовательно данных производных, начиная с самой функции при нулевом значении аргумента, —
ƒ(0),ƒ',ƒ",ƒ"', …
и из разложения в ряд ех—
Что такое ряд производных, у которых последовательно повышается порядок? Производная есть, как мы видели, закон инобытия той или иной идеальной взаимозависимости. Производная от этой производной, или производная второго порядка, есть переход этого самого закона в инобытие. Производная третьего порядка есть еще новый инобытийный закон этого второго закона. И т. д. Ясно, стало быть, что если производная есть инобытие функции, то ряд производных последовательно повышающегося порядка есть инобытие самого перехода функции в инобытие, инобытие самого становления, инобытийное становление становления функции в инобытии, отрицание отрицания функции в инобытии. Переходя в инобытие и порождая из себя производную, функция отрицает себя. Но, продолжая неизменно дробить этот свой переход в инобытие и тем порождать производные все более и более высокого порядка, функция отрицает свое отрицание, исчерпывает свое отрицание и тем стремится к новому утверждению — к утверждению себя в инобытии не только как становящейся, но и как ставшей.
Однако этого еще недостаточно для того, чтобы действительно совершилось отрицание функции. Дело в том, что производные последовательно повышающегося порядка, взятые сами .по себе, вполне висят в воздухе; они ни к чему не прикреплены; и неизвестно, какие из них брать и как их брать. Тут утверждается только то, что вообще существуют такие производные; но на что они тут употреблены, об этом сама их отвлеченная последовательность ничего не говорит. Надо, стало быть, привязать эти висящие в воздухе ино–бытийные образы к каким–нибудь фактам, чтобы они стали не только теоретической возможностью, но и реально–субстанциальным существованием функции в инобытии, т. е. чтобы действительно получилось разложение функции в ряд. Однако привязать эти отвлеченно данные производные в целях инобытийного осуществления можно только к таким фактам, которые сами даны в становлении. В математике, в теории пределов, рассматривается одно такое тело, которое представляет собой как раз становящуюся единицу. Это именно число с. Ведь это е, которое разлагается:
очевидно, представляет собой единицу, сложенную с отношением ее ко всем возможным другим числам, кроме единицы, причем эти числа уходят в бесконечность. Ясно, что число е есть не что иное, как единица, но такая единица, которая разработана и перекрыта становящимся слоем взаимоотношения ее со всем окружающим числовым инобытием. Но ведь мы должны прикрепить ряд наших производных не просто к единице, но к определенному аргументу разлагаемой функции. Функция, переходя в инобытие, перестраивает существующее в ней отношение к аргументу. И, создавая инобытие своего инобытия, она все равно должна как–то оставаться связанной с судьбой своего аргумента. Поэтому наши производные должны быть осуществлены не просто на становящейся единице, на разложении е в ряд, но на таком е, которое в себе воплощает упомянутый аргумент, которое имеет смысл этого аргумента. Потому производные объединяются с разложением в ряд ех. А это и значит, что мы получаем упомянутые два элемента, из которых диалектически состоит ряд Маклорена.
Если понятна диалектическая структура ряда Маклорена, то, конечно, должен быть понятен и ряд Тейлора (путем простой замены jc на х—я), и ряд Коши (путем замены χ на приращение h). Более подробная диалектика рядов и их классификация, конечно, должны составлять предмет специального исследования. Следует заметить, что понятие ряда существенно связано с теоремой о среднем значении: ряд и есть осуществление этой теоремы. Поэтому рассуждение о рядах должно быть предварено изложением теорем Ролля, Лагранжа и Коши, составляющих, таким образом, тоже центральное содержание этого отдела дифференциального исчисления.
Наконец, третья большая проблема дифференциального исчисления— это т. н. исследование функций. Данный отдел анализа обладает всеми чертами синтетической природы. Если простое дифференцирование функции дает ее производную, а ряды дают становление этой производной в инобытии, то исследование функций возвращается опять к самой функции и рассматривает ее в свете ее инобытийных превращений. В дифференцировании мы переходим от первообразной функции к ее производной, в рядах—от ее производной переходим к дальнейшим производным, поскольку они воплощают первообразную функцию в инобытии. Исследование функции возвращает наши мысли опять к конструированию функции, но не функции самой по себе, а функции постольку, поскольку на ней отражаются ее судьбы, когда она пребывала в инобытии.
Самой типичной проблемой в области этого исследования является проблема minim [um]a и maxim [um ]а функции. Мы интересуемся знать, при каких условиях, в частности при каком значении аргумента, данная функция имеет наибольшее или наименьшее значение. Оказывается, что максимум и минимум функции бывает тогда, когда первая производная ее равняется нулю. Это последнее приравнение производной нулю и дает возможность вычислить искомое значение аргумента. Не нужно только подобное «исследование функций» понимать исключительно геометрически, как это часто делают. «Исследование функций» имеет значение не только для вычерчивания кривых, но и для чисто аналитического рассмотрения значения функции. Это не мешает, конечно, тому, чтобы при вычерчивании кривых по данным аналитическим выражениям с особенной ясностью и выпуклостью выступали все результаты такого «исследования функций». Так, все эти точки максимума и минимума, точки перегиба, т. н. особые точки, симметрия кривой относительно осей координат, исследование на ассимптоты и пр., — все эти моменты прекрасно иллюстрируют «исследование функций», хотя это только иллюстрация и зависит она всецело от аналитических соображений. Во всех этих проблемах вполне ясно положение всей области «исследования функций». Это то, что объединяет и синтезирует пребывание функции как исходной для своих инобытийных судеб с функцией как возвращающейся к себе из этих инобытийных судеб.
2. Интегральное исчисление. Выше мы определили интеграл как предел суммы всех дифференциалов. Другими словами, это ставшая функция, как тоже у нас указывалось. Функция уходит в инобытие, в становление. В этом становлении она исчерпывает себя и тем самым как бы заново определяется, становится и образуется, как свой собственный диалектический дублет. Уже ряды являются таким образованием и самым восстановлением функции в недрах инобытия. Но ряды дают эту функцию со всей ее инобытийной тяжестью, во всей ее субстанциальной положенности. Функция же может вместить в себе все свои инобытийные функции, не просто давая их в расчлененно–внеположном виде, но и в виде сплошной собранности и определенности. Эту роль и играет интеграл.
Поясним примером. Пусть имеется какой–нибудь физический источник света, и пусть лучи этого света распространяются в окружающее его темное пространство. Когда эти лучи освещают окружающее темное пространство, инобытие, то можно брать именно это самое инобытие во всей его вещественности и можно брать только освещающие его лучи. Возьмем вещи, расположенные вокруг свечи, — книги, стулья, столы, диваны и пр. Это будет вещественное инобытие свечи, определенным образом освещенное. И свет, излучаемый свечой, мы можем взять как цельную картину всех вещей, находящихся в комнате вокруг свечи. Это значит, грубо говоря, что функцию, т. е. лучи света, мы разложили в ряд. Тут мы как бы дали синтетическую картину всех действий данных световых лучей на окружающие, инобытийные предметы. Так можно было бы понять феномен разложения функции в ряд. Совсем другое будет в данном случае интеграл.
Уже в понятии «исследования функций» мы гораздо ближе вошли в существо функции, чем это возможно в случае с рядами. В «исследовании функций» мы уже возвращаемся к самой функции из ее инобытийных судеб. И если в понятии ряда возвращение функции к самой себе мыслится лишь в пределах ее инобытийной вещественности, то в «исследовании» оно дано уже как оставление этой инобытийной вещественности и сосредоточение на чисто смысловой инобытийности функции. В интеграле к этой смысловой инобытийности присоединяется функция в своей собственной субстанциальности. Если в рядах дана инобытийная вещественность, окружающая функцию, осмысленная через распластанность и как бы растянутость функции в инобытии, то в «исследовании функций» эта инобытийная вещественность уже отсутствует, а оставлена только инобытийная, но в то же время чисто смысловая растянутость и распластанность функции; эта растянутость и распластанность и является здесь предметом «исследования». Однако в «исследовании» эта чисто инобытийная осмысленность не прикреплена к самой субстанции первообразной функции, она как бы висит в воздухе; «исследуется» картина жизни функции, как результат и отголосок пребывания ее в недрах инобытийной вещественности, но вне рассмотрения судьбы самой–то функции, ее самостоятельной субстанции. Функция, взятая как таковая, как самостоятельная субстанция, и на ее фоне—смысловая картина всех ее инобытийных перевоплощений, эта функция уже не есть просто предмет того, что в анализе называется «исследованием», но это есть интеграл. В «исследовании» мы изучаем не вещи, освещенные свечой, но самый свет, ею излучаемый и получающий те или другие оттенки в зависимости от освещаемых предметов. А интеграл—это есть не только не вещи, освещенные при помощи световых лучей, но даже и не самый свет, излучаемый свечой (хотя и содержащий в себе всю реальную окрашенность вещей); это есть сама свеча, но не просто как таковая, а еще и рассмотренная с точки зрения всех световых оттенков, образующихся в результате освещения ею отражающих вещей, свет ее в своей конкретной выявленности и определенности.