Алексей Лосев - Хаос и структура
Может ли, спросим теперь, наука о мышлении обойтись без понятия интеграла? Обойтись без этого значило бы просто исключить всякое непрерывное становление и всякий переход к пределу, т. е. заморозить, остановить, удушить всякое движение в мире и в мысли. Едва ли эта концепция может рассчитывать на успех.
Можно сказать еще и так. Традиционная логика (да и вообще логика) очень злоупотребляет анатомией мышления и очень пренебрегает его физиологией. Мудро распределить анатомические и физиологические моменты в цельном организме мышления — это дело большого искусства философствовать и строить науку, ибо организма нет ни без анатомического строения, ни без физиологических функций, ни без определенного и полного взаимоотношения того и другого. Когда школьная логика просто делит род на виды, и больше ничего, она явно злоупотребляет анатомией, если не прямо вивисекцией. Так никогда не может быть, если только мышление есть организм. Есть в мышлении некоторая общая «физиологическая» жизнь, которая и оживляет все органы и члены ее организма и которая воссоединяет их в одно живое целое. Но как подступить к этой «физиологии» мышления? Очевидно, надо прежде всего уметь чувствовать, понимать и фиксировать его движение, подвижность; далее, для этого надо уметь находить здесь непрерывное движение, непрерывное становление, разлитые по всем органам и членам мыслительного организма; наконец, надо уметь видеть, в каком направлении, по какому закону и принципу, до какого предела простирается становление этого взаимоотношения организма со своими органами и частями, по какому методу из общей жизни организма мышления образуются все его частности, все бесконечные, то более точные, то менее точные, его проявления и выражения. Однако мы уже доказали, что все это есть не что иное, как постоянное математическое интегрирование и дифференцирование.
5. Рассуждая о жизненно логическом значении математического анализа, необходимо иметь в виду также и то, что на этом значении базируются не только наши повседневные жизненные оценки и поведение, но и всякая развитая наука и что, таким образом, некоторого рода дифференцирование и интегрирование фактически налично даже и в таких науках или в таких отделах наук, которые не имеют ничего общего с чисто математическим дифференцированием и интегрированием. Однако здесь мы предоставим слово Энгельсу, который лучше, чем кто–нибудь другой, понимал философскую природу инфинитезимального метода и которому принадлежат следующие замечательные слова (соответственно той картине мироздания, которую имел в виду сам Энгельс):
«Наша геометрия исходит из пространственных отношений, а наша арифметика и алгебра—из числовых величин, соответствующих нашим земным отношениям, т. е. соответствующих телесным величинам, которые механика называет массами, — массами, как они встречаются на Земле и приводятся в движение людьми. По сравнению с этими массами масса Земли кажется бесконечно великой и рассматривается земной механикой как бесконечно большая величина. Радиус Земли =∞. Таков принцип механики при рассмотрении закона падения. Но не только Земля, а и вся Солнечная система и все встречающиеся в ней расстояния оказываются с своей стороны бесконечно малыми, как только мы начинаем интересоваться наблюдаемой в телескоп звездной системой, расстояния в которой приходится определять уже световыми годами. Таким образом, мы имеем здесь перед собой бесконечные величины не только первого, но и второго порядка и можем предоставить фантазии наших читателей — если им это нравится—построить себе дальнейшие бесконечные величины высших порядков в бесконечном пространстве».
«Но, согласно господствующим теперь в физике и химии взглядам, земные массы, тела, служащие объектами механики, состоят из молекул, из мельчайших частиц, которые нельзя делить дальше, не уничтожая физического и химического тождества рассматриваемого тела. Согласно вычислениям В. Томсона, диаметр наименьшей из этих молекул не может быть меньше одной пятидесятимиллионной доли миллиметра. Допустим также, что наибольшая молекула имеет диаметр в одну двадцатипятимиллионную долю миллиметра. В таком случае это все еще ничтожно малая величина по сравнению с теми наименьшими массами, с которыми оперируют механика, физика и даже химия. Между тем она обладает всеми присущими соответственной массе свойствами; она может представлять в физическом и химическом отношении эту массу и действительно представляет ее во всех химических уравнениях. Короче говоря, она обладает по отношению к соответствующей массе теми же самыми свойствами, какими обладает математический дифференциал по отношению к своей переменной, с той лишь разницей, что то, что в случае дифференциала в математической абстракции кажется нам таинственным и непонятным, здесь становится само собой разумеющимся и, так сказать, очевидным.
Природа оперирует этими дифференциалами, молекулами точно таким же образом и по точно таким же законам, как математика оперирует своими абстрактными дифференциалами. Так, например, дифференциал от х3 будет 3x2dx, причем мы пренебрегаем 3xdx2 и dx . Если мы сделаем соответственное геометрическое построение, то мы получим куб, длина стороны которого х, причем длина эта увеличивается на бесконечно–малую величину dx. Допустим, что этот куб состоит из какого–нибудь возгоночного вещества, скажем из серы; допустим, что три прилегающие к одной вершине поверхности защищены, а другие три свободны. Поместим этот серный куб в атмосферу из серного газа и понизим температуру последней надлежащим образом; в таком случае серный газ начнет осаждаться на трех свободных гранях нашего куба. Мы не пойдем вразрез с опытными данными физики и химии, если, желая представить себе этот процесс в его чистом виде, мы допустим, что на каждой из этих трех граней осаждается прежде всего слой толщиной в одну молекулу. Длина стороны куба увеличилась на диаметр одной молекулы, на dx. Объем же куба χ3 увеличился на разницу между х3 и х3 + 3x2dx+Зхdx2+dx3, причем мы, подобно математике и с тем же правом, можем пренебречь dx3, т. е. одной молекулой, и 3xdx2, тремя рядами линейно расположенных друг около друга молекул длиной в dx. Результат одинаков: приращение массы куба равно 3x2dx.
Строго говоря, у серного куба dx3 и 3xdx2 не бывает, ибо две или три молекулы не могут находиться в том же пространстве, и прирост его массы точно равен поэтому 3x2dx+3xdx+dx. Это находит себе объяснение в том, что в математике dx есть линейная величина, но таких линий, не имеющих толщины и ширины, в природе самостоятельно, как известно, не существует, а следовательно, математические абстракции только в чистой математике имеют безусловную значимость. А так как и она пренебрегает 3xdx2+dx3, то это не имеет значения.
То же самое можно сказать и об испарении. Если в стакане воды происходит испарение верхнего слоя молекул, то высота слоя воды уменьшается на dx, и продолжающееся улетучивание одного слоя молекул за другим фактически есть продолжающееся дифференцирование. А если под влиянием давления и охлаждения пар в каком–нибудь сосуде сгущается, превращаясь в воду, и один слой молекул отлагается на другом (причем мы отвлекаемся от усложняющих процесс побочных обстоятельств), пока сосуд не заполняется, то перед нами здесь буквально происходит интегрирование, отличающееся от математического интегрирования лишь тем, что одно совершается сознательно, человеческой головой, а другое—бессознательно, природой. Но процессы, совершенно аналогичные процессам исчисления бесконечно–малых, происходят не только при переходе из жидкого состояния в газообразное и наоборот.
Когда — благодаря толчку—движение масс уничтожается как таковое и переходит в теплоту, в движение молекулярное, то разве не происходит в этом случае дифференцирования движения масс? А когда молекулярное движение пара в цилиндре паровой машины, суммируясь, поднимает поршень на определенную высоту, переходит в движение масс, — разве это не интегрирование? Химия разлагает молекулы на атомы, имеющие меньшую массу и протяженность, но представляющие величины того же порядка, что и первые, так что молекулы и атомы находятся в определенных, конечных отношениях друг к другу. Следовательно, все химические уравнения, выражающие молекулярный состав тел, представляют собой по форме дифференциальные уравнения. Но в действительности они уже интегрированы благодаря фигурирующим в них атомным весам. Химия оперирует дифференциалами, числовое взаимоотношение которых известно.
Но атомы не считаются чем–то простым, не считаются вообще мельчайшими известными нам частицами материи. Не говоря уже о химиках, которые все больше и больше склоняются к мнению, что атомы обладают сложным составом, большинство физиков утверждает, что мировой эфир, опосредствующий световые и тепловые излучения, состоит тоже из дискретных частиц, столь малых, однако, что они относятся к химическим атомам и физическим молекулам так, как эти последние к механическим массам, т. е. относятся, как d2x к dx. Здесь, таким образом, общераспространенное представление о строении материи тоже оперирует дифференциалами второго порядка, и ничто не мешает человеку, которому бы это нравилось, вообразить себе, что в природе имеются еще аналогии d3x, d4x и т. д.