KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Джон Дербишир, "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." бесплатно, без регистрации.
Перейти на страницу:

Аналогия нарушается, потому что a×b всегда и без единого исключения равно a×b, но, к сожалению, неверно (за исключением случайных совпадений), что ab = ba (единственный случай, когда это так для целочисленных степеней и не совпадающих a и b — это 24 = 42). Например, 102 есть 100, но 210 есть 1024. Поэтому, если мы собираемся обратить x = ab, то нам понадобятся две разные вещи: способ выразить a через x и b и, отдельно, способ выразить b через x и a. Первое — не проблема. Возведем обе части в степень 1/b и в соответствии с 3-м правилом получим a = x1/b (что согласно 6-му правилу означает, что a есть корень b-й степени из x). Но как же выразить b через x и а? Правила действий со степенями не дают здесь никаких подсказок.

Здесь-то и появляются логарифмы. Ответ таков: b есть логарифм x по основанию a. Это просто-напросто определение логарифма. Логарифм числа x по основанию a (обычно записываемый как loga x) определяется как такое число b, для которого верно равенство x = ab. Это дает целое семейство логарифмических функций: логарифм x по основанию 2, логарифм x по основанию 10 (который более старшие читатели могут припомнить в качестве облегчающего вычисления средства, — его проходили в старших классах школы примерно до 1980 года) и т.д. Можно было бы представить их все в виде графиков, как это сделано для графиков функций х0 на рисунке 5.1.

Я не буду этого делать, потому что мне глубоко безразличны все члены логарифмического семейства, кроме одного — логарифма по основанию e, где e — необычайно важное, хотя и иррациональное число 2,71828182845…. Логарифм по основанию e — единственный, который меня интересует, и единственный, которым мы будем пользоваться в этой книге. На самом деле я больше не буду говорить «логарифм по основанию e», а буду говорить просто «логарифм».[37] Так что же такое логарифм числа x? По данному выше определению, это такое число b, для которого делается верным равенство x = eb.

Поскольку ln x — это такое число b, для которого верно равенство x = eb, ясно, что x = eln x. Это равенство — просто записанное математически определение того, что такое ln x. Но в дальнейшем оно будет играть такую важную роль, что мы сделаем из него правило.

8-е правило действий со степенями:

x = eln x.

Это верно для любого положительного числах. Например, ln 7 есть 1,945910… по той причине, что (с точностью до шести знаков после запятой) 7 = 2,7182811,945910. Отрицательные числа не имеют логарифмов (хотя это еще одна вещь, по поводу которой я оставляю за собой право потом передумать). И нуль также не имеет логарифма. Не существует такой степени, в которую можно было бы возвести в, чтобы получить отрицательный или нулевой результат. Область определения логарифма составляют все положительные числа.

Логарифмическая функция присутствует повсеместно в рассматриваемой области математики. Мы уже встречали ее в главе 3.viii-ix, где она участвовала в Теореме о распределении простых чисел и в ее эквивалентных формулировках. Она будет появляться снова и снова в этой книге во всем, что имеет отношение к простым числам и дзета-функции.

Раз уж логарифмическая функция будет встречаться на каждом шагу, рассмотрим ее подробнее. На рисунке 5.2 показан график[38] функции ln x для аргументов, простирающихся до 55. В частности, отмечены значения этой функции для аргументов, равных 2, 6, 18 и 54. Эти аргументы растут «по умножению» на тройку, а как видно из графика, соответствующие значения функции растут равными шагами — т.е. «по сложению». Именно это обстоятельство подчеркивалось, когда мы говорили о логарифмической функции в главе 3.viii.


Рисунок 5.2. Логарифмическая функция.

Дело стоит того, чтобы сказать еще несколько слов. Логарифмическая функция хороша тем, что она превращает умножение в сложение. Взглянем на линии, отмеченные на графике. Аргументы равны 2, 6, 18 и 54 — мы начинаем с 2, потом умножаем на 3, потом снова на 3, потом еще раз на 3 и еще раз на 3. Значения функции, если ограничиться четырьмя знаками после запятой, равны 0,6931, 1,7918, 2,8904 и 3,9890 — они начинаются с 0,6931, потом прибавляется 1,0987, затем 1,0986 и еще раз 1,0986. Логарифмическая функция превратила умножение (на 3 в нашем случае) в сложение (прибавление числа ln 3, равного 1,09861228866811…).

Это следует из определения ln x и из правил действий со степенями. Из 8-го правила следует, что если a и b — любые два положительных числа, то a×b = eln a×eln b. Но, заменяя правую часть согласно 1-му правилу, получаем a×b = eln a + ln b. Однако a×b — само по себе некоторое число, и, согласно 8-му правилу, имеем a×b = eln (a×b). Мы получили два различных выражения для a×b. Приравнивая их, получаем новое правило действий со степенями.

9-е правило действий со степенями:

ln (a×b) = ln a + ln b.

Это потрясающая штука. Она означает, что, когда мы сталкиваемся со сложной задачей на умножение, «взятие логарифмов» (т.е. применение того принципа, что из равенства P = Q следует равенство ln P = ln Q) позволяет свести ее к задаче на сложение, которая может оказаться проще. Звучит это почти банально, и тем не менее именно этот нехитрый приемчик понадобится нам в главе 19.v для того, чтобы повернуть Золотой Ключ.

Из того, что ln (a×b) = ln a + ln b, следует, что ln (a×a×a×…) = ln a + ln a + ln a + …. И это дает последнее правило действий со степенями.

10-е правило действий со степенями:

ln (aN) = N×ln a.

Не повторяя необходимую цепь логических рассуждений, просто отметим, что это правило применимо ко всем степеням буквы а, включая и отрицательные. Особо важный частный случай состоит в том, что ln (1/a) = −ln a, поскольку 1/а есть не что иное, как a−1. Так что если нам известно, что ln 3 = 1,09861228866…, то мы немедленно заключаем, что ln 1/3 = −1,09861228866…. Вот почему график функции ln x проваливается вниз к отрицательной бесконечности по мере того, как x делается все ближе и ближе к нулю. Это обстоятельство тоже поможет нам повернуть Золотой Ключ.


IV.

Как мы видим, ln x — медленно возрастающая функция. Неторопливость, с которой ln x возрастает, не только сама по себе обворожительна, но и важна. Главное здесь то, что ln x растет медленнее, чем любая степень буквы x. На первый взгляд это кажется довольно очевидным. Когда я говорю «степень буквы x», вы, должно быть, думаете о квадратах и кубах; а как вы знаете, график функции возведения в квадрат или куб так лихо вылетает за границы рисунка, что его и сравнивать нечего с еле плетущейся логарифмической функцией. Это, конечно, верно, но дело не в этом. Я имею в виду не степени вроде х2 или х3, а степени типа х0,1.

На рисунке 5.3 показаны графики некоторых функций xa для малых значений a. Там выбраны a = 0,5, 0,4, 0,3, 0,2 и 0,1, а пунктиром для сравнения показана логарифмическая функция. Как видно, чем меньше a, тем более плоским делается график функции xa. А кроме того, для тех a, которые меньше определенного значения (на самом деле — значения 1/e, что равно 0,3678794…), кривая, отвечающая функции ln x, пересекает кривую xa до того, как уйти достаточно далеко на восток.

Рисунок 5.3. Функции xa при малых положительных a.

Так вот, неважно, сколь маленьким вы возьмете a, все равно график функции ln x рано или поздно окажется более плоским, чем график xa. Если а больше чем 1/e, то это видно сразу, даже на изображенных графиках. Если же a меньше чем 1/e, то, уйдя достаточно далеко на восток — т.е. взяв достаточно большой аргумент x, мы увидим, как кривая ln x снова пересекает кривую xa, после чего уже навсегда остается ниже нее.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*