KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Хавьер Фресан, "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." бесплатно, без регистрации.
Перейти на страницу:

ВЕЙЛЬ: Поздравляю вас, господин Леви-Стросс! Вы все поняли! В этом случае также можно показать, что общество является сократимым, применив новый, более прямой метод, который я вам сейчас объясню. Рассмотрим брак вида (а, b, с, d). Согласно нашим расчетам, сыновья от этого брака вступят в брак по правилу (a +1,b +1,a + c + cf +1,cf +1).

Важно заметить, что разность между первой и четвертой координатами равна:

(b+1)-(d+1)=b-d.

Точно такой же будет разность между первой и четвертой координатами в исходной разновидности брака! Математики говорят, что эта величина инвариантна относительно f. Более того, она также инвариантна относительно g, так как в этом случае вторая и четвертая координаты не меняются. Следовательно, композиция f и g позволяет получить только те правила, в которых значение b — d равно исходному. К примеру, начав с (1, 1, 1, 0), мы никогда не сможем получить (1, 0, 1, 0), так как в первом случае разность между второй и четвертой координатами равна 1, во втором — 0.

Это означает, что представители клана D2, которые вступают в брак по правилу (I), принадлежат к иной группе, чем представители клана С2, вступающие в брак по той же формуле. Выполнив некоторые действия, мы сможем определить эти две группы в явном виде:

Первая группа.

84


Вторая группа.

ЛЕВИ-СТРОСС: Любой сказал бы, что аборигены мурнгин знали теорию групп.

ВЕЙЛЬ: Когда система, которая на первый взгляд кажется невообразимо сложной, путем умелого выбора обозначений превращается в нечто столь простое, как абелева группа, я воспринимаю это как чудо. Я не осмелюсь сказать, что принцип, согласно которому любой мужчина может жениться на дочери брата своей матери, был введен, чтобы доставить удовольствие математикам (это было бы уже слишком), но следует признать, что я до сих пор испытываю особую привязанность к аборигенам мурнгин.

Видя подобные примеры, сложно не согласиться с сонетом Микеланджело, в котором он говорит, что мраморная глыба уже содержит в себе произведение искусства, и задача художника — отсечь все лишнее:

И высочайший гений не прибавит
Единой мысли к тем, что мрамор сам
Таит в избытке,— и лишь это нам
Рука, послушная рассудку, явит[7].

Математик, подобно великому скульптору, высекает свои творения из необычайно твердого и прочного материала. Несовершенства материала столь сильно влияют на конечный результат, что наделяют его некоторого рода объективностью.

85

Глава 5 Под знаком Диофанта

Фурье считал, что главная цель математики есть принесение пользы обществу и объяснение явлений природы; тем не менее такой философ, как вы, должен знать, что единственной целью науки является честь человеческого разума, и с этой точки зрения вопрос о числе так же важен, как и вопрос о системе мира.

Карл Густав Якоб Якоби в письме к Адриену Мари Лежандру

ЛЕВИ-СТРОСС: Помните, как в одной из наших бесед вы пообещали мне подробнее рассказать о задаче из вашей докторской диссертации?

ВЕЙЛЬ: Как я мог забыть об этом! Но в этот раз, если вы позволите, мы применим иной метод. Я написал несколько достаточно подробных заметок; прочитайте их, а затем спросите меня о том, что показалось вам непонятным. Вперед!

О жизни математика Диофанта Александрийского достоверно практически ничего не известно. Мы точно знаем лишь возраст мудреца из эпиграммы-задачи, записанной на его надгробии и приведенной в Палатинской антологии:

«Прах Диофанта гробница покоит; дивись ей и камень
Мудрым искусством его скажет усопшего век.
Волей богов шестую часть жизни он прожил ребенком.
И половину шестой встретил с пушком на щеках.
Только минула седьмая, с подругой он обручился.
С нею, пять лет проведя, сына дождался мудрец;
Только полжизни отцовской возлюбленный сын его прожил.
Отнят он был у отца ранней могилой своей.
Дважды два года родитель оплакивал тяжкое горе,
Тут и увидел предел жизни печальной своей».

Если мы обозначим через х число лет, прожитых Диофантом, то получим следующее уравнение первой степени:

х = x/6+ x/12+x/7+5+x/2+4.

87

Выполнив несколько элементарных преобразований, получим, что Диофант прожил 84 года. Это уравнение намного проще, чем те, что обеспечили александрийскому мудрецу место в истории математики. В «Арифметике» Диофант впервые рассмотрел целые корни полиномиальных уравнений, которые сегодня в его честь называются диофантовыми. К диофантовым относится, например, уравнение

хn + уn = zn.

Если показатель степени равен 2, это уравнение имеет бесконечно много положительных решений, но если n больше либо равно 3, уравнение решений не имеет. Первым на это обратил внимание француз Пьер Ферма, когда изучал «Арифметику» Диофанта.

На страницах книги Ферма написал: «Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него». Первое доказательство этой теоремы, названной великой теоремой Ферма, было получено лишь три с половиной столетия спустя. В этом доказательстве использовались намного более сложные методы, чем те, что были известны французскому математику. Несмотря на кажущуюся простоту, диофантовы уравнения принадлежат к числу труднейших задач математики, поэтому мы рассмотрим лишь простейшие из них: линейные уравнения, уравнение Пелля — Ферма и уравнения эллиптических кривых.

Введение

Прежде чем приступить к изучению диофантовых уравнений, проясним некоторые понятия. Так как в моих заметках упоминаются различные классы чисел, скажем о них несколько слов. С одной стороны, существуют натуральные числа, которые используются при счете: 1, 2, 3... (к ним также иногда относят ноль). Для двух любых натуральных чисел определена операция сложения, однако она не может быть групповой: чтобы существовали обратные элементы, необходимо также рассмотреть отрицательные числа. Добавив отрицательные числа к натуральным, получим абелеву группу целых чисел: 0, 1,-1, 2,-2, 3,-3. В действительности на этой структуре определена не одна, а сразу две операции: мы можем не только складывать целые числа, но и перемножать их. Операция умножения ненулевых целых чисел также не является групповой. Так, чтобы, к примеру, элемент 2 имел обратный, необходимо рассмотреть число 1/2. Чтобы устранить этот недостаток, необходимо рассмотреть все дроби вида а/b (где а и b целые числа, b отлично от нуля), которые образуют множество рациональных чисел. Каждому из них мы можем поставить в соответствие периодическую десятичную дробь: к примеру, для 1/3 такой дробью будет 0,3333..., для 2/11 — 0,181818... Если мы будем рассматривать только периодические дроби, то такие простые уравнения, как х2 = 2, не будут иметь решения, поскольку десятичная запись квадратного корня из 2 — непериодическая дробь.

88

Такие числа называются иррациональными. Чтобы получить еще больше решений, мы можем рассмотреть все десятичные дроби, в записи которых отсутствуют какиелибо закономерности. Такие числа называются вещественными.

Но вернемся к натуральным числам, которые Кронекер называл божьим творением. Для двух натуральных чисел m и n, m называется делителем n, если результат деления n на m — натуральное число. К примеру, 2 — делитель 10, так как 10 при делении на 2 дает 5 — натуральное число; 2 не является делителем 15, так как 15 при делении на 2 дает 7,5 — «некруглое» число. Если n делится на m, то существует натуральное число k такое, что n будет произведением m и k: n = m · k. Обратите внимание, что делители числа всегда меньше либо равны ему, и любое число делится на единицу и само себя. В некоторых случаях число делится только на единицу и само себя — такие числа называются простыми. Так, 5 — простое число, так как ни 2, ни 3, ни 4 не являются его делителями, а 6 не является простым, так как делится на 2 и на 3. Первые простые числа — 2, 3, 5, 7, 11, 13, 17, 19, 23... Можно доказать, что простых чисел бесконечно много.

Простые числа составляют основу всей арифметики: через них определяются все остальные числа. В самом деле, если n не является простым, то на интервале от 1 до n найдется натуральное число, которое будет его делителем. Таким образом, n можно представить в виде n = а · b. К примеру, если исходное число равно 30, имеем 30 = 2 · 15. Мы получили два числа а и b, для которых можем повторить описанные действия еще раз. Если оба этих числа простые, процесс заканчивается.

Если же какое-то из этих чисел не является простым, мы вновь запишем его в виде произведения двух множителей. В нашем примере 2 является простым, а 15 можно представить как произведение 3 и 5. Имеем 30 = 2 · 3 * 5. Так как 2, 3 и 5 — простые числа, процесс завершен. В общем случае на каждом шаге мы либо находим простой сомножитель, либо представляем число как произведение двух меньших чисел, поэтому описанный нами процесс рано или поздно обязательно завершится.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*