Энрике Грасиан - Том 18. Открытие без границ. Бесконечность в математике
Во втором издании своей работы «Метод флюксий и бесконечных рядов с приложением его к геометрии кривых», вышедшем в 1736 году (сама работа датирована 1672 годом), Ньютон использует так называемый метод флюксий. Этот метод предполагал интересный переход: Ньютон перестал рассматривать бесконечно малые как нечто статическое и наделил их способностью двигаться. Он рассматривал переменную как непрерывно движущуюся точку (этим же свойством он наделил прямые и плоскости) и назвал флюентами переменные, обладающие этими свойствами, а флюксией — результат такого движения, то есть сравнение двух различных состояний такой точки. Мы не будем подробно описывать метод флюксий Ньютона и лишь повторим, что Ньютон не считал необходимым использовать в своих вычислениях бесконечно малые величины, так как это могло привести к различным противоречиям. Он рассматривает эти величины «…не как состоящие из небольших частей, но как описывающие непрерывное движение. Линии описываются и, следовательно, создаются не наложением точек, а непрерывным движением точек».
С помощью метода флюксий Ньютону удалось найти касательные к кривым, площади подграфиков, длины кривых, а также максимумы и минимумы функций и точки перегиба для различных кривых. Ему удалось сделать это, избежав проблем, связанных с использованием бесконечно малых величин, однако за это ему пришлось заплатить свою цену. Анализ, построенный на этих предпосылках, имел важные ограничения и открыл путь к другим разделам математики, где властвовали дифференциалы — странные бесконечно малые математические объекты, неразрывно связанные с актуальной бесконечностью.
Метод флюксий изложен во французском издании книги Ньютона, вышедшем в 1740 году.
Лейбниц
Первые математические труды Готфрида Лейбница (1646–1716) были посвящены комбинаторике. В них уже проявилась гениальность ученого, однако они были устаревшими и имели определенные черты, характерные для средневековой науки, которой в немецких университетах той эпохи уделялось большое внимание. В 1672 году Лейбниц отправился в Париж с важной дипломатической миссией. Именно тогда основным родом его занятий стала математика — отчасти это произошло под влиянием Христиана Гюйгенса, который познакомил Лейбница с последними математическими открытиями.
В этот период Лейбниц пишет первые работы, посвященные суммам бесконечных рядов. Одним из наиболее примечательных результатов стал полученный им и названный в его честь ряд, в котором устанавливается неожиданная связь между числом π и нечетными числами:
Несомненно, важнейшими работами Лейбница стали его труды по анализу бесконечно малых, положившие начало важнейшему разделу математики — математическому анализу. Неоценимую роль сыграли верно выбранные обозначения. Так, с помощью знаков d и введенных им для обозначения дифференциала и интеграла, стало возможным объединить множество разрозненных и неоднозначных математических понятий. Лейбниц не всегда действовал внимательно и аккуратно, из-за чего многие его результаты были ошибочными, сравнивал себя с тигром, который «позволяет уйти добыче, которую не смог схватить в первый, второй и третий прыжок».
Прыжком Лейбница был переход от дискретного к непрерывному. Комбинаторика, которой он владел в совершенстве, — это дискретный мир, но мир функций и кривых является не дискретным, а непрерывным, и именно при переходе от одного к другому проявился математический гений и смелость Лейбница, так как он смог преобразовать неделимые Кавальери в новую математическую сущность — бесконечно малые, для чего создал особые алгоритмы. Рассмотрим ключевой элемент созданного Лейбницем анализа бесконечно малых, изложенный в упрощенном виде на языке современной математики.
* * *
СПОСОБНОСТИ К ЯЗЫКАМ
Лейбниц был сыном известного юриста и в шесть лет остался сиротой. Учился он самостоятельно и все силы отдал изучению латыни, так как именно на ней было написано большинство книг в библиотеке, оставшейся от отца. В десять лет Лейбниц уже читал классические труды на латыни и греческом, а в 13 — писал гекзаметром на латыни. Подобными выдающимися способностями к языкам отличается большинство известных математиков.
* * *
Нам известно, что прямая определяется двумя точками, но она также может определяться одной точкой и углом наклона. Например, прямые r1 и r2, проходящие через начало координат, определяются углами наклона α и β соответственно. Мы говорим об угле наклона не только применительно к математическому анализу, но и в повседневной жизни, например когда речь идет об угле наклона на участке автомагистрали.
* * *
ОСНОВЫ МЕЖДУНАРОДНОГО ПРАВА
В 15 лет Лейбниц начал изучать право в Лейпцигском университете. Несмотря на то что большую часть времени он уделял изучению философии, через пять лет Лейбниц получил право на степень доктора юриспруденции, которую ему отказались присвоить ввиду юного возраста студента. После этого он перевелся в Альдорфский университет в Нюрнберге, где защитил позднее ставшую знаменитой диссертацию об историческом характере законодательства, в которой заложил основы международного права.
* * *
С помощью транспортира можно узнать конкретную величину угла, например 24°. Другой способ измерить угол состоит в определении его тангенса. В прямоугольном треугольнике АВС тангенсом угла называется отношение длины противолежащего катета к прилежащему.
Будем обозначать тангенс буквами tg: tg(α) = АВ/СВ.
Теперь предположим, что дана непрерывная кривая (то есть ее можно нарисовать, не отрывая карандаша от бумаги) у =f(х) и мы хотим найти касательную к этой кривой в ее произвольной точке, которую обозначим Р. Как мы уже говорили, прямая определяется точкой и углом наклона. Точка Р уже известна, и единственное, что осталось найти, — угол наклона искомой прямой. Лейбниц в качестве основы всех своих вычислений использовал построение треугольника, который он называл характеристическим треугольником. По сути, этот треугольник стал краеугольным элементом анализа бесконечно малых.
Обозначим координаты точки Р через х и у. Теперь выберем точку Q кривой и обозначим ее координаты х + Δх, у + Δу. Нетрудно показать, что угол наклона прямой, проходящей через точки Р и Q, определяется как tg(α) = Δy/Δx. Если теперь мы приблизим точку Q к точке Р, ничего особенно не изменится — просто уменьшатся Δх и Δу. Это приближение можно осуществлять непрерывно, так что упомянутые нами изменения х и у будут сколь угодно малыми. В определенный момент они станут достаточно малыми, чтобы ими можно было пренебречь, то есть они не будут влиять на результат. Эти бесконечно малые величины Лейбниц назвал дифференциалами, dx и dy соответственно.
При непрерывном приближении точки Q к точке Р прямая, соединяющая эти точки, приближается к касательной кривой в точке Р так, что искомый угол наклона α можно будет получить из формулы
tg(α) = Δy/Δx
Когда расстояние между Р и Q станет бесконечно малым, будет выполняться условие
tg(α) = dy/dx
* * *
ПИСЬМА ПРИНЦЕССАМ
Во многих областях Лейбниц известен прежде всего как философ, а не как математик. В возрасте 20 лет он уже опубликовал свои знаменитые «Рассуждения о комбинаторном искусстве». Несмотря на то что многие из его фундаментальных результатов изложены в таких работах, как «Новые опыты о человеческом разуме» (1703) или «Монадология» (1714), важная часть философских размышлений Лейбница содержится в переписке с принцессами Софией, Софией Шарлоттой и Каролиной — с ними он был связан не только интеллектуальной перепиской, но и теплыми дружескими узами. Принцессы действительно достаточно хорошо разбирались в философии и в некотором роде были единственными, кто мог способствовать созданию научных сообществ вне университетов для свободного общения интеллектуалов, не ограниченного рамками религиозных догм.