KnigaRead.com/

Александр Гротендик - УРОЖАИ И ПОСЕВЫ

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Гротендик, "УРОЖАИ И ПОСЕВЫ" бесплатно, без регистрации.
Перейти на страницу:

над пространством, с которым Лерэ связал соответствующие «группы когомологии» (так называемые «когомологии с коэффициентами в пучке»). Это было как если бы старый добрый, «когомологический», эталон метра, которым располагали до сих пор для «измерения» пространства, превратился вдруг в невообразимое множество новых «метров» всевозможной величины, формы и содержания, каждый внутренне приспособленный к рассматриваемому пространству, о котором поставляет нам сведения с безупречной точностью, причем такие, какие может дать только он один. Это была главная идея в глубоком преобразовании нашего подхода к пространствам всех видов и, безусловно, одна из важнейших идей, появившихся в течение этого столетия. Благодаря прежде всего последующим работам Жан-Пьера Серра идеи Лерэ уже в первое десятилетие после своего появления на свет принесли такие плоды, как впечатляющий прорыв в развитии теории топологических пространств (и в частности их инвариантов, называемых «гомотопическими», тесно связанных с когомологиями), и другой, не менее важный, прорыв в так называемой «абстрактной» алгебраической геометрии (с основополагающей статьей «АКП» Серра, опубликованной в 1955 г.). Мои собственные работы по геометрии, начиная с 1955 г., шли в продолжение этих трудов Серра и, тем самым, новаторских идей Лерэ.

13. Точка зрения и язык пучков, введенные Лерэ, заставили нас рассмотреть «пространства» и «многообразия» всех родов в новом свете. Они не затрагивали, однако, самого понятия пространства, ограничиваясь тем, что предоставили нам возможность, вглядевшись новыми глазами, достичь более тонкого понимания устройства традиционных «пространств», уже всем знакомых. Однако это понятие пространства оказалось неадекватным для того, чтобы дать отчет о наиболее существенных «топологических инвариантах», выражающих «форму» абстрактных алгебраических многообразий (с которыми связаны гипотезы Вейля), даже «схем» вообще (обобщающих старинные многообразия). Для ожидаемого «союза» числа и величины (размера) это ложе было бы решительно тесновато: на нем сумел бы с грехом пополам устроиться разве что один из будущих супругов (именно, невеста), но никак не оба сразу! «Новый принцип», который еще оставалось найти, чтобы свадьба, обещанная добрыми феями, совершилась, был попросту иным, просторным ложем, которому недоставало лишь новобрачных - и никто его не замечал до некоторых пор…

Прогулка по творческому пути, или дитя и Мать

Эта «двуместная кровать» возникла (как по мановению волшебной палочки) с появлением идеи топоса. Эта идея охватывает в общетопологической интуиции как традиционные топологические пространства, олицетворяющие мир непрерывной величины, вместе с (самозванными) «пространствами» (или «многообразиями») неприкаянных служителей абстрактной алгебраической геометрии, так и бесчисленное множество других типов структур, до тех пор казавшихся безнадежными пленниками «арифметического мира» систем «разрывных», или «дискретных».

Концепция пучков и была тем безмолвным вожатым, тем действенным ключом (отнюдь не тайным), приведшим меня, не петляя и без проволочек, к супружеской опочивальне с просторным брачным ложем. Места в самом деле довольно; это ведь как широкая тихая река, чьи воды до того глубоки, что

«Всем царским коням заодно Допить до дна бы мудрено…»

- как поется в старинной песенке, которую ты наверное певал и сам, или по меньшей мере слышал. И тот, кто спел ее первым, верней ощутил бы скрытую красоту и спокойную силу топоса, чем любой из моих ученых коллег, прежних учеников и друзей…

Ключ был один и тот же - как при первоначальном, предварительном подходе (через посредство весьма удобного, но менее подлинного понятия «ситуса»), так и в случае топоса. Идею топоса я хотел бы сейчас попытаться описать.

Рассмотрим совокупность всех пучков над заданным (топологическим) пространством, или, если угодно, тот диковинный арсенал, образованный всеми эталонами метра, служащими для его измерения{47}. Мы рассмотрим эту «совокупность», или «арсенал», как снабженный наиболее очевидной структурой, которую ему можно приписать, так сказать, «на глазок» - именно, структурой, называемой «категорией». (Читателю, не знакомому с термином в техническом смысле, не о чем беспокоиться. Это совсем не понадобится в дальнейшем.) Это нечто вроде

«сверхструктуры измерения» по имени «категория пучков» (над рассматриваемым пространством), которая впредь будет считаться как бы «воплощающей» то, что наиболее существенно для пространства. Это законно (с точки зрения «математического здравого смысла»), поскольку оказывается возможным «воссоздать» полностью исходное топологическое пространство{47} в терминах «категории пучков» (или арсенала измерительных приборов), ему соответствующей. (Проверить это - простое упражнение; конечно, когда вопрос уже поставлен…) Ничего больше не нужно для уверенности в том, что (если это почему-либо для нас заманчиво) мы отныне можем «забыть» об исходном пространстве, чтобы держать в уме и использовать только соответствующую «категорию» (или «арсенал»), которая будет рассматриваться как наиболее адекватное олицетворение топологической (или «пространственной») структуры, о выражении которой идет речь.

Как это часто бывает в математике, нам удалось (благодаря решающему влиянию идеи о пучке, или «когомологическом метре») выразить некоторое понятие («пространства», в данном случае) в терминах другого («категории»). Всякий раз открытие такого перевода понятия (отражающего определенное положение вещей) на язык другого понятия (соответствующего ситуациям иного типа) обогащает наше представление о каждом из них путем неожиданного слияния особенностей интуитивного восприятия, характерных для одного и другого. Так, ситуация по природе «топологическая» (воплощенная в данном пространстве) оказывается здесь представленной ситуацией по природе «алгебраической» (воплощенной в «категории»); или, если угодно, «непрерывное», воплощенное в образе пространства, предстает «переданным», или «выраженным» структурой категории, по природе «алгебраической» (воспринимавшейся до сих пор как существенно «разрывная», или «дискретная»).

Более того, первое из этих понятий - пространства - казалось нам в каком-то смысле понятием (по содержательности) «максимальным» - настолько уже обобщенным, что едва ли можно себе представить его расширение, которое оставалось бы в рамках «разумного». Напротив, другая сторона зеркала{48}, эти «категории» (или «арсе-

Прогулка по творческому пути, или дитя и Мать

налы»), с которыми сталкиваются, сойдя с крыльца топологических пространств, имеют весьма частную природу. Они располагают в действительности набором свойств в высшей степени типических{49}, что делает их как бы «имитациями» самой простой из них, какую только можно вообразить - той, которую получают, исходя из пространства, сведенного к одной точке. То есть «пространство в новом стиле» (или топос), обобщающее традиционные топологические пространства, будет описываться попросту как «категория», которая, не вытекая с необходимостью из обыкновенного пространства, тем не менее обладает всеми хорошими свойствами (единожды четко для всех определенными, разумеется) этой «категории пучков».

* * *

Вот это и есть новая идея. Ее возникновение можно рассматривать как результат наблюдения, сказать по правде, почти детской простоты, что то, что на самом деле важно в топологическом пространстве - это отнюдь не его «точки» и не его «подмножества»{50} с отношениями близости между ними, но пучки над этим пространством и категория, которую они образуют. В том, чего я добился, я лишь довел до логического конца исходную идею Лерэ - тем самым переступил нечто, решившись сделать шаг.

Как сама идея о пучках (принадлежащая Лерэ), или о схемах, как всякая «большая идея» (концепция), которая переворачивает вверх дном закоснелое, устоявшееся мировосприятие, идея топоса ошеломляет своей естественностью, «очевидностью», простотой (на грани, я бы сказал, наивности и простоты даже «глуповатой») - тем особенным свойством, которое так часто вынуждает нас восклицать: «О, это невозможно!» - полуразочарованно, полузавистливо, еще, пожалуй, с оттенком, который можно передать словами «сумасбродно», «несерьезно», припасенными у всех, кто в ужасе шарахается, неожиданно столкнувшись с чем-то

категорию, рассматриваемую как что-то вроде «двойника» пространства, «другой стороны зеркала»…

простым до неприличия. С тем, что нам напоминает, быть может, дни нашего младенчества, спрятанные глубоко в памяти, ибо мы давно от них отреклись…

14. Понятие схемы представляет собой значительное расширение понятия алгебраического многообразия, и за счет этого полностью обновляет алгебраическую геометрию, завещанную моими предшественниками. Понятие топоса - расширение или, лучше сказать, метаморфоза понятия пространства. Тем самым оно обещает произвести сходное обновление топологии и, за ее пределами, геометрии. Уже сейчас, впрочем, оно успело сыграть решающую роль для расцвета новой геометрии (главным образом через посредство вышедших из него тем /-адических и кристальных когомологии, позволивших доказать гипотезы Вейля). Идея топоса, как и ее старшая сестра (почти близнец), имеет две дополняющие друг друга черты, существенные для полного и плодотворного обновления; вот они.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*