KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света

Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Микель Альберти, "Мир математики. т 40. Математическая планета. Путешествие вокруг света" бесплатно, без регистрации.
Перейти на страницу:

Укажем, как обозначаются некоторые большие числа.



Возможно, подобное представление чисел связано с подсчетом раковин каури: раковины при счете сначала объединялись в группы по 5, затем — в группы по 20. Пять групп по 20 раковин образовывали ряд из 100 раковин. Когда мы делим раковины на группы по 5, мы считаем от 1 до 5. Именно поэтому йоруба определяют числа 11, 12, 13 и 14 прибавлением единиц к 10. Однако эта версия не объясняет, почему число 15 определяется иначе.

Возможное объяснение заключается в том, что йоруба считали раковины на пальцах одной руки. Допустим, что мы держим в уме число 10 и последовательно разгибаем пальцы рук, чтобы отсчитать 11, 12, 13 и 14. Как отсчитать на пальцах этой же руки следующие числа до 20? Сначала разогнем пятый палец, а затем будем поочередно загибать пальцы до тех пор, пока не досчитаем до следующего десятка. Следовательно, числа, которые мы добавим к первому десятку, когда будем разгибать пальцы, мы отнимем от следующего десятка, когда будем загибать пальцы.

Таким образом, когда мы разогнем пятый палец, то будем представлять, что вычли 5 из 20: 20 — 5 = 15. Загнем один палец и получим 20 — 4 = 16, загнем еще один и получим 20 — 3 = 17. Когда мы загнем все пальцы, то начнем отсчет следующего десятка, то есть досчитаем до 20.


На рынке в Мозамбике

Методам счета за пределами академической среды посвящено множество исследований. Целью одного из них было узнать, как женщины каждый день выполняют сложение и вычитание в уме (чаще всего это происходит на рынках). Чтобы вычесть 5 единиц из 62, больше половины женщин на рынке в Мозамбике (Восточная Африка) сначала вычитали 2, а затем отнимали еще 3 от результата:

62 — 5 = (62 — 2) — 3 = 57.

Примерно треть опрошенных женщин вычитали 5 из 60, после чего прибавляли к результату две единицы:

62 — 5 = (60 — 5) + 2 = 57.

Меньшинство вычитало 10 из 62, после чего прибавляло к результату разность

62 — 5 = (62–10) + (10 — 5) = 57.

При умножении большинство женщин удваивали числа до тех пор, пока не получали приближенный результат. К примеру, они умножали 6 на 13 следующим образом (этот метод похож на египетский, описанный в начале этой главы):


Авторство всех этих методов подсчета неизвестно — так же как неизвестно, обучал ли женщин кто-либо считать именно таким способом. Возможно все описанные способы счета в уме составляют часть культурной традиции, связанной с ролью женщины в торговых отношениях.

В Нигерии также были зафиксированы алгоритмы вычислений в уме, схожие с приведенными выше. Так, сумма 18 + 19 вычислялась по следующим правилам:

18 + 19 = (18 — 1) + (19 +1) = 17 + 20 = 37

18 + 19 = (20 — 2) + (20 — 1) = 20 + 20 — (2 + 1) = 40 — 3 = 37.

При делении 45 на 3 полезно знать, что 21/3 = 7:


Эти методы позволяют понять, что одни и те же действия можно выполнять множеством способов, а математическое творчество довольно распространено.


В индийском автобусе

Город Ченнаи, ранее носивший название Мадрас, — столица штата Тамилнад на юго-востоке Индии. Водители автобусов в этой местности должны очень быстро вычислять в уме, чтобы определить, сколько денег должен заплатить каждый пассажир (сумма зависит от тарифов на разных участках пути), а в конце рабочего дня на основе дневного заработка они должны вычислить так называемую батта — свою заработную плату. Батта зависит от разновидности автобуса, числа поездок и дневной выручки.

Нирмала Нареш из Университета штата Иллинойс изучил методы, которые используют водители автобусов для вычисления батта и платы за проезд в зависимости от маршрута. При этом водители учитывают соотношение между индийской валютой рупией, ее сотой частью (пайсом) и различными банкнотами и монетами.




Улица Ченная в штате Тамилнад (Индия).


Далее изложены вычисления, которые совершает в уме водитель ченнайского автобуса, чтобы найти произведение 3·293 и 3,30·61:

3·293 = 3·300 — (3·7) = 900 — 21 = 879.

3,50·61 = 3·61 + (1/2)·61 = 183 + 30,50 = 213,5.

Как видите, водитель не выполняет умножение напрямую и не применяет школьные методы, а упрощает исходные числа, чтобы легче считать в уме. В первом случае он округляет 293 до 300. Умножить 300 на 3 в уме несложно, но полученный результат больше правильного на величину, в три раза большую, чем допущенная погрешность в 7 единиц. Чтобы получить правильный ответ, нужно вычесть из 900 три раза по 7. Во втором случае десятичная дробь 3,50 раскладывается на целую и дробную части, то есть на три единицы и одну половину. Далее 61 умножается на 3 — получаем 183. Остается добавить к этому числу половину от 61, то есть 30,5.

Эти вычисления в уме доказывают, что водители прекрасно умеют не только представлять числа в виде суммы, но и на практике применяют известное в академическом мире свойство дистрибутивности умножения относительно сложения. Хотя водители получили начальное математическое образование и учились считать в уме в школе, в повседневной жизни они применяют народные методы, которые отличаются от академических.

Разделение десятичной дроби на целую и дробную часть при умножении часто используется, когда нужно произвести вычисления в уме. Этот народный метод не изучается в школах, но встречается в разных частях света.

* * *

ВЫЧИСЛЕНИЕ КВАДРАТОВ В УМЕ

Так как (n ± 1)2 — n2 ± 2n + 1, квадрат целого числа можно вычислить в уме, зная квадрат предыдущего или следующего числа:

312  = 302 + 2·30 +1 = 900 + 60 + 1 — 961.

192  = 202 - 2·20 + 1 = 400 — 40 + 1 = 439.

Так как n2 = а2 + n2 — а2 = а2 + (n + а)·(nа), квадрат целого числа также можно определить через произведение его суммы и разности с другими числами, которое несложно вычислить:

192  = 1 + (192 - 12) = 1 + (19+1)·(19-1) = 1 + 20·18 = 1 + 360 = 361.

372  = 9 + (372- З2) = 9 + (37 + 3)·(37 — 3) = 9 + 40·34 = 9 + 40·(30 + 4) = 9 + 40·30 + 40·4 = 9 + 1200 + 160 = 1369.

* * *

Торг: стратегия действий с числами в торговле

Торг был и остается общепринятой торговой практикой. Хотя в западном мире он практически ушел в прошлое, в других регионах торг по-прежнему сохраняется на традиционных рынках и в излюбленных туристами местах.

Цель торга — прийти к соглашению относительно цены, которая устроит и продавца, и покупателя. Как правило, торг начинает продавец: он называет цену, которую должен заплатить покупатель. Часть игры заключается в том, что изначальная цена всегда завышена (порой — слишком завышена), и покупатель должен в ответ назвать другую, более низкую цену. При этом он не должен сбивать ее слишком сильно, чтобы продавец не почувствовал себя оскорбленным и не потерял интерес к покупателю.

Неписанное правило торга на традиционных рынках заключается в том, что справедливой ценой можно считать цену, равную половине первоначальной. Но это правило выполняется не всегда — порой продавец сам приглашает покупателя назвать цену первым.

Чаще всего цена при торге меняется на некоторую фиксированную величину, но покупатель и продавец могут договориться о скидке в процентах. Если покупателю предложили скидку в 5 %, ему не следует ожидать, что он сможет выторговать скидку в 50 %, то есть приобрести товар за полцены. В этом случае торг можно считать успешным, если покупателю удается удвоить названную скидку, то есть сбавить 10 % от цены. Скидки обычно предлагаются на довольно дорогие товары, так что даже небольшое изменение цены в процентном отношении предполагает существенную экономию, поэтому такой вид торга встречается не очень часто.

Наиболее простая математическая модель торга — это линейная модель. В ней цены, предлагаемые продавцом и покупателем, изменяются пропорционально. При всей своей простоте эта модель неточна: в реальной жизни предлагаемые цены увеличиваются и уменьшаются неравномерно, и по мере приближения к соглашению цена изменяется все меньше.

Более точной кажется модель, в которой графики изменения цены представляют собой кривые. Кривая цены, предлагаемой покупателем, С(х), будет возрастающей и выпуклой. Это означает, что покупатель будет называть все большую цену, увеличивая ее все меньше и меньше. К примеру, последовательность значений 20, 60, 100 и 140 соответствует первой, линейной модели, последовательность 20, 50, 70 и 75 — второй модели. Значения в этой последовательности возрастают, но разница между ними становится все меньше. Кривая продавца, V(x), напротив, будет убывающей, и разница между последовательными значениями также будет убывать.

Если считать, что результатом увеличения С(х) и уменьшения V(x) будет итоговая цена, получим параболические кривые, так как увеличение и уменьшение будут описываться производными исходных функций, V'(х) и С'(х). В случае с кривой покупателя производная положительна (С(х) возрастает), в случае с кривой продавца — отрицательна (V(х) убывает):

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*