KnigaRead.com/

Андрей Скляров - Обитаемый остров Земля

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Андрей Скляров, "Обитаемый остров Земля" бесплатно, без регистрации.
Перейти на страницу:

Процесс дыхания и транспорта газов кровью основан на том, что переход какого-либо газа от одних органов к другим осуществляется прежде всего путем диффузии, которая обеспечивается за счет разности парциальных давлений этого газа в разных органах. Для незнакомых с этим термином поясним: парциальное давление газа в смеси равно тому давлению, которое будет иметь данный газ, если все остальные газы из смеси удалить.

Рис. 179. Транспорт газов.


Диффузия кислорода в кровь обеспечивается разностью парциальных давлений O2 в воздухе альвеол легких и в венозной крови (8–9 кН/м2, или 60–70 мм рт. ст.). Углекислый газ, приносимый кровью из тканей в связанной форме, освобождается в капиллярах легких и диффундирует из крови в альвеолы; разность pCO2 (парциального давления углекислого газа) между венозной кровью и альвеолярным воздухом составляет около 7 мм рт. ст. Переход O2 в ткани и удаление из них CO2 также происходят путем диффузии, так как pO2 (парциальное давление кислорода) в тканевой жидкости всего 2,7–5,4 кН/м2 (20–40 мм рт. ст.), а в клетках еще ниже, при этом pCO2 в клетках может достигать 60 мм рт. ст.

Но помимо простой диффузии в процессе переноса газов играют роль и химические реакции. И углекислый газ не находится в организме в свободном состоянии — он, соединяясь с водой (гидратируясь), дает угольную кислоту (H2CO3), молекула которой диссоциирует на ион гидрокарбоната (HCO3—) и протон (H+). Следовательно, повышение концентрации CO2 в растворе ведет к снижению pH (этот показатель — отрицательный логарифм концентрации ионов H+), то есть к повышению кислотности раствора. Основная часть поступающего в кровь CO2 растворяется, снижая ее pH, а небольшая его доля обратимо связывается с гемоглобином, образуя карбогемоглобин. Падение pH среды и присоединение CO2 уменьшают сродство гемоглобина к кислороду (то есть способность гемоглобина поглощать кислород), что способствует высвобождению последнего в раствор (плазму крови) и поступлению оттуда в окружающие ткани.

Обратная картина наблюдается при удалении из крови CO2 около дыхательной поверхности. Происходящая здесь оксигенация (присоединение кислорода) гемоглобина приводит к высвобождению из его молекулы протонов (то есть ионов H+), что подавляет диссоциацию угольной кислоты на ионы и ведет к ее разложению на воду и СО2, который удаляется из организма через дыхательную поверхность. В тканях же стимулируется обратный процесс: дезоксигенация гемоглобина (потеря им кислорода) способствует гидратации CO2 и поступлению его в кровь. При этом гемоглобин содержится в эритроцитах вместе с ферментом карбоангидразой, который катализирует процессы гидратации и дегидратации CO2, ускоряя их примерно в 10.000 раз.

Таким образом, процесс дыхания и переноса газов кровью оказывается тесно связан с кислотно-щелочным балансом крови. И вот, что нам будет важно: оксигенированный гемоглобин (т. е., гемоглобин, насыщенный кислородом) — в 70 раз (!!!) более сильная кислота, чем гемоглобин. Это играет большую роль в связывании в тканях О2 и отдаче в легких СО2. Потеря кислотных свойств гемоглобином при отдаче кислорода тканям усиливает его взаимодействие с СО2 (а соответственно и передачу СО2 от тканей в кровь). И наоборот: насыщение кислородом крови в легких повышает кислотность гемоглобина, который вытесняет кислотный остаток угольной кислоты из ее соединений, способствуя ее переходу в форму угольной кислоты (Н2СО3), которая тут же распадется на воду и углекислый газ, что увеличивает отдачу СО2 из крови в воздух легких. Говоря языком специалистов, благодаря гемоглобину процесс переноса СО2 в крови оказывается очень тесно сопряжен (связан) с переносом О2.

Так вот. У животных, использующих вместо гемоглобина в качестве дыхательного пигмента гемоцианин, перенос O2 кровью не так тесно сопряжен с транспортом CO2, как у живых организмов, гемоглобин которых находится в эритроцитах вместе с карбоангидразой.

Прежде всего: становится более понятен выбор эволюции в пользу тех дыхательных пигментов (а именно — гемоглобина), которые содержат именно ионы железа — гемоглобин более эффективен.

Теперь посмотрим, что будет происходить, если будет повышаться концентрация углекислого газа в крови. Ясно, что прежде всего это увеличит концентрацию Н2СО3, т. е. увеличивается кислотность крови (рН крови снижается).

Для регулирования кислотно-щелочного баланса кровь содержит специальные так называемые буферные системы, поддерживающие кислотность крови на стабильном уровне. И 75 % буферной способности крови обеспечивает именно гемоглобин!!! Это происходит благодаря описанной выше способности гемоглобина сильно менять свои кислотные свойства. В результате у человека pH крови равен 7,35-7,47 и сохраняется в этих пределах даже при значительных изменениях питания и других условий. Например, чтобы сдвинуть pH крови на какую-то величину в щелочную сторону, необходимо добавить к ней в 40–70 раз больше щелочи, чем к равному объему чистой воды. (На других буферных системах, а также дополнительных возможностях решения проблемы повышенной концентрации СО2 мы остановимся чуть позже.)

Но у богов в крови не гемоглобин, а гемоцианин, который не столь сильно меняет свою кислотность при изменении концентрации О2, и поэтому не столь сильно способен нейтрализовать излишки кислотности при изменении концентрации СО2. Тогда что же будет с ними происходить при избытке углекислого газа?..

Прежде всего нарушится кислотно-щелочной баланс крови, ее рН упадет (то есть повысится кислотность). Как можно привести в норму кислотно-щелочной баланс в этом случае?..

Первый ответ, который просится: путем добавления щелочей или оснований. И вот тут-то есть смысл вспомнить про замечательную формулу — С2Н5ОН!!! Для тех, кто случайно не в курсе: это — формула этилового спирта, содержащегося в алкогольных напитках и обладающего основными свойствами.

И тогда пристрастие богов к спиртным напиткам, отмеченное ранее и легко обнаруживаемое в мифах, получает свое вполне прозаическое объяснение. Просто боги попали в условия, в которых их организм не справлялся самостоятельно с избытком углекислого газа (вследствие наличия у богов голубой крови). Им требовалось (!!!) чем-то нейтрализовывать избыточную кислотность крови, возникающую из-за «излишков» углекислоты в ее составе! И боги использовали для этих целей так называемую этерификацию — реакцию образования сложных эфиров из спирта и органических кислот, содержащихся в крови. Эта реакция смещает равновесие в сторону более высоких рН, химически «выдавливая» вредный углекислый газ.

Именно в этом причина того, что боги научили людей изготовлять спиртные напитки и поставили эти напитки на одно из первых мест в жертвоприношениях!..

Вообще, спиртные напитки обладают целым рядом замечательных свойств. Они содержат большое количество органических кислот, благодаря которым обладают и буферными свойствами, не позволяющими рН слишком опускаться, и тем самым препятствуют удержанию в крови излишков СО2. Но отметим сразу: эти свойства присущи прежде всего слабоалкогольным напиткам! Крепкие спиртные напитки ведут себя иначе. И может быть именно поэтому с древнейших времен известны рецепты лишь слабоалкогольных напитков, а крепкие спиртные напитки появились сравнительно недавно (лишь в последнее тысячелетие) — крепость богам была не нужна…

Однако вернемся к другим свойствам алкогольных напитков…

Пьющие вино люди меньше болеют гриппом, чем непьющие. Таким образом, вино обеспечивает антигриппозную профилактику. Наблюдения врачей свидетельствуют, что люди, пьющие (умеренно) вино, реже не выходят на работу из-за инфекционных заболеваний, чем те, кто исповедует полное алкогольное воздержание. Лабораторные опыты показали, что красное вино, даже разбавленное, уничтожает вирус полиомиелита.

Установлено, что смертность от коронарной недостаточности обратно пропорциональна потреблению алкоголя. Но среди алкогольных напитков только вино обладает ярко выраженным превентивным эффектом в отношение сердечно-сосудистых заболеваний. Исследования показывают, что при умеренном употреблении вина, от одной до четырех рюмок в день (1 рюмка вина емкостью 100 мл и крепостью 12 градусов содержит 10 грамм спирта), смертность вследствие коронарной недостаточности снижается до 15–60 % по сравнению с риском подобного исхода для людей, не пьющих вина. Зато не пьющие вина совсем, равно как и пьющие его чрезмерно (от 60 грамм алкоголя в день и более), подвергаются очень высокому риску смертельного исхода.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*