KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Культурология » Сергей Валянский - Другая история науки. От Аристотеля до Ньютона

Сергей Валянский - Другая история науки. От Аристотеля до Ньютона

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Сергей Валянский, "Другая история науки. От Аристотеля до Ньютона" бесплатно, без регистрации.
Перейти на страницу:

Используемая при этом система счисления — десятичная иероглифическая. Числа делятся на классы по 4 разряда в каждом. Особого знака нуля при такой системе записи, очевидно, не требуется. (Нуль действительно появился значительно позднее, только в XII веке.) Чтобы придать большую общность постановке основной задачи об измерении площадей, в первой книге введены простые дроби и арифметические действия над ними. Правила действий — обычные; особенностью является только то, что при делении дробей требуется предварительное приведение их к общему знаменателю.

Но вот что настораживает. Употребляемое в первой книге значение «пи» = 3 не соответствует китайской традиции не только Х, но и VI века. Считается, что китайские математики того времени умели и более точно вычислять значения «пи». Например, в I веке до н. э. у Лю Синя дается значение «пи» = 3,1547, во II веке н. э. у Чжан Хэна «пи» определено, как 10^1/2 (3,162). Чжан Хэн считал, что квадрат длины окружности относится к квадрату периметра описанного квадрата, как 5 к 8. В III веке при вычислении сторон вписанных многоугольников Лю Хуэй нашел, что «пи» = 3,14. Он исходил из предложения, что площадь круга аппроксимируется снизу площадями вписанных многоугольников. Для аппроксимации сверху площади этих многоугольников увеличиваются на сумму прямоугольников, описанных вокруг остаточных сегментов.

Дойдя до 192-угольника, Лю Хуэй получил, что «пи» = 3,14. Некоторые авторы утверждают, что Лю Хуэй продолжил вычисления далее до 3072-угольника и получил значение 3,14159. В V веке Цзу Чун-чжи, по свидетельству Вей Ши (643 год), дал для «пи» значение 3,1415927. Ну, и как все это согласовать с тем, что китайцы даже в Х веке не знали, как вычислять значение «пи»?

Книга вторая — «Соотношение между различными видами зерновых культур», отражает старинную практику взимания налогов зерном, измеряемым в объемных мерах, и расчетов при переработке этого зерна. Математические задачи, возникающие при этом, — это задачи на тройное правило и пропорциональное деление. Ко второй книге была позднее добавлена группа задач на определение стоимости предметов, число которых берется как целое, так и дробное.

Задачи на пропорциональное деление, деление пропорционально обратным значениям чисел, а также простое и сложное тройное правило составляют содержание и следующей, третьей книги — «Деление по ступеням». Правил суммирования арифметических прогрессий здесь еще нет, хотя, по утверждениям тех же историков науки, они известны китайцам с VI века (трактат Чжан Цзю-цзяна).

В четвертой книге вначале речь идет об определении стороны прямоугольника по данным площади и другой стороне. Затем излагаются правила извлечения квадратных и кубических корней, нахождения радиуса круга по его площади. Правила сформулированы специально для счетной доски. Подкоренное число делится на разряды соответственно по 2 или по 3 знака, затем последовательно подбирается очередное число корня и дается правило перестройки палочек на счетной доске.

В книге пятой, «Оценка работ», собраны задачи, связанные с расчетами при строительстве крепостных стен, валов, плотин, башен, ям, рвов и других сооружений. При этом вычисляются как объемы различных тел, так и потребности в рабочей силе, материале, транспортных средствах при различных условиях.

Книга шестая — «Пропорциональное распределение», начинается группой задач о справедливом (пропорциональном) распределении налогов. Математические методы здесь те же, что в книге 3, где речь шла о распределении доходов между чиновниками различных классов, — пропорциональное деление, простое и сложное тройное правило. Кроме того, в шестую книгу входит серия задач на суммирование отдельных арифметических прогрессий и задач на совместную работу лиц с разной производительностью.

«Избыток-недостаток» — так называется седьмая книга. В ней подобраны задачи, приводящиеся к линейным уравнениям и их системам, и разработан способ их решения, совпадающий с методом двух ложных положений. Задачи и в этом случае накапливались в возрастающей степени трудности. Метод тоже еще не сформулирован четко и имеет много разновидностей частного характера.

Усовершенствование складывающихся в седьмой книге правил решения систем линейных уравнений и распространение их на системы с большим числом неизвестных изложены в правиле фан-чэн, которому посвящена вся восьмая книга. Задачи этой книги приводят к системам до пяти совместных уравнений линейных с положительными корнями. Для всех систем установлен единый алгоритм вычисления корней — упомянутый фан-чэн.

Дело в том, что в процессе преобразований матрицы системы китайские ученые ввели отрицательные числа. Для их сложения и вычитания и было введено специальное правило, которое можно перевести как правило «плюс-минус». Так как все вычисления, в том числе и преобразования матрицы, производились на счетной доске, то для обозначения отрицательных чисел применялись счетные палочки другого цвета или формы, а в случае записи применялись иероглифы разных цветов.

Расширение понятия числа в связи с нуждами обобщения созданного алгоритма является характерной особенностью развития математики. Те же стремления обеспечить общность решения в радикалах уравнений 2–4 степени привели в Италии к введению в XVI веке мнимых чисел. Что же касается приоритета китайских математиков относительно правила фан-чэн, то он был бы бесспорен, если бы мы не знали, что отрицательные числа в явном виде появились в Европе в конце XV века в сочинениях Н. Шюке, и что очень много европейских новинок было привезено в Китай иезуитами в XVI веке.

Практическую основу последней книги «Математики в девяти книгах» составляют задачи определения недоступных расстояний и высот с помощью теоремы Пифагора и свойств подобных треугольников. Математически эта книга особенно интересна общей, алгебраической формулировкой правил. Помимо элементарных способов применения теоремы Пифагора, в ней имеется способ нахождения пифагорейских троек, то есть целочисленных решений уравнения x^2+y^2=z^2. Некоторые задачи приводят к полным квадратным уравнениям, а правила их решения эквивалентны общеупотребительным и ныне формулам.

Например, задача № 11 о размерах двери, относительно которой известны диагональ и разность между длиной и шириной, сводится к двум уравнениям. Выводов и доказательств, как уже было упомянуто, в рассматриваемом трактате нет.

Мы остановились так подробно на обзоре содержания «Математики в девяти книгах» потому, что это сочинение является самым значительным и даже, пожалуй, единственным крупным памятником древней китайской математики. И зная любовь китайцев к своим приоритетам, и стремление всё свое объявлять древним, полагаем, что он был создан позже прихода европейцев в Китай.

Сами же историки объявляют, что с XIV века в Китае начинается длительный период застоя в развитии наук. Добытые ранее знания не развиваются и даже забываются. Математика существует преимущественно за счет усвоения иностранных знаний. И лишь потом науками вновь занялись, и сразу вспомнили свои древние открытия. Как же это произошло?

В 1583 году в Китай пришел иезуит-миссионер М. Риччи, а затем сюда потянулись и другие. Видимо, не без их содействия в 1606 году в Китае впервые появились издания «Начал» Евклида, в 1650 году — таблицы логарифмов Влакка. Оригинальное же развитие китайской науки все еще было «прекратившимся». Спрашивается, а было ли оно раньше? Математики-специалисты китайского происхождения всегда готовились к научной деятельности за границей, да в большинстве случаев оттуда в Китай и не возвращались.

О математике Индии

В средневековой математике Индии преобладали вычислительно-алгоритмические методы и отсутствовали попытки построения дедуктивных систем. Геометрия индийцев — также практическая. И это не удивительно, так как в основном всё сюда приносилось из других мест, в том числе и наука — сначала вместе с религиозными эмигрантами из Византии, а потом с деятелями мусульманской экспансии. Соединение здесь различных потоков знания дало свои результаты, и весьма неплохие результаты.

Индийские математики ввели понятие нуля и широко использовали отрицательные числа, проводили исследования по комбинаторике (Ариабхатта, якобы V век). Они создали десятичную систему записи натуральных чисел и разработали правила операций над записанными так числами. Эту запись чисел стали применять математики многих восточных стран, откуда она попала в Европу. Индусы начали оперировать с иррациональными количествами так же, как с рациональными, без геометрического их представления, в отличие от византийских греков. У них были специальные обозначения для алгебраических действий, включая извлечение корня. Именно благодаря тому, что индусские и среднеазиатские ученые не смутились различием иррациональных и рациональных количеств, они смогли преодолеть «засилие» геометрии, и открыли путь развитию алгебры.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*