KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Культурология » Сергей Валянский - Другая история науки. От Аристотеля до Ньютона

Сергей Валянский - Другая история науки. От Аристотеля до Ньютона

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Сергей Валянский, "Другая история науки. От Аристотеля до Ньютона" бесплатно, без регистрации.
Перейти на страницу:

Сложились также определенные приемы производства математических операций с целыми числами и дробями. При умножении, например, преимущественно используется способ постепенного удвоения одного из сомножителей и складывания подходящих частных произведений (отмечены звездочкой) (12х12)

1 12

2 24

*4 48

*8 96

вместе 144

При делении также используется процедура удвоения и последовательного деления пополам. Деление, по-видимому, было самой трудной математической операцией для египтян; в нем наблюдается самое большое разнообразие приемов.

Приведем пример одной из задач.

«Сало. Годовой сбор 10 беша. Какой ежедневный сбор? Обрати 10 беша в ро. Это будет 3200. Обрати год в дни. Это будет 365. Раздели 3200 на 365. Это 8 2/3 1/10 1/2190. Обрати».

Производится постепенный подбор частного. 8 дает разницу между истинным и частичным делимым: 3200–2920 = 280. Сомножитель 2/3 дает: 365х 2/3 = 243 1/3. Еще до 280 не хватает 36 2/3. Очередной подбор 1/10 дает уже разницу в 1/6 (так как 36 2/3 — 36 1/2 = 1/6). Остается только подобрать число, которое, будучи умножено на 365, дало бы 1/6. Это 1/2190. Таким образом, частное отыскивается постепенным подбором, для которого еще нет единого метода.

Часто встречается операция, называемая «хау» («куча»), соответствующая решению линейного уравнения вида

ах + bх +… сх = d.

Материалы, содержащиеся в папирусах, позволяют утверждать, что в Египте начали складываться элементы математики как науки. Техника вычислений еще примитивна, методы решения задач не единообразны.

Византийская математика

Основным достижением математической мысли, характеризующим начало византийской математики, было возникновение и развитие понятия о доказательстве. Первым из философов, применившим в математике метод доказательства, считается греческий ученый Фалес из Милета. Фалес доказал, например, равенство вертикальных углов, равенство углов при основании равнобедренного треугольника, один из признаков равенства треугольников и т. д.

Новым было то, что Фалес впервые попытался логически свои выводы обосновать. Тем самым он положил начало дедуктивной математики — той, которая впоследствии была превращена в стройную и строгую систему знаний.

Затем метод доказательства был усовершенствован и развит учеными пифагорейской школы, которые доказали, в частности, утверждение, называемое теперь теоремой Пифагора. Пифагорейцы предприняли первую попытку свести геометрию и алгебру того времени к арифметике. Они считали, что «все есть число», понимая под словом «число» лишь натуральные числа.

Однако натуральных чисел и дробей оказалось недостаточно для того, чтобы выразить длину диагонали квадрата со стороной 1. Анализ полученного доказательства привел к исследованию начальных вопросов теории чисел (четности и нечетности натуральных чисел, разложения чисел на простые множители, свойств взаимно простых чисел и т. д.). Византийские математики эллинского периода предприняли попытку обосновать всю математику на основе геометрических понятий. Они истолковывали, например, сложение величин, как сложение отрезков, а умножение — как построение прямоугольника с заданными сторонами.

Недостатком геометрического подхода к математике было то, что он препятствовал развитию алгебры. Византийцы умели в геометрической форме решать квадратные уравнения, но невозможно было представить геометрически четвертую и высшие степени длины, а, кроме того, нельзя было складывать выражения разных степеней: эта сумма геометрического смысла не имела. По той же причине в византийской математике не было отрицательных чисел и нуля, иррациональных чисел и буквенного исчисления.

Пифагор первый заметил, что сила и единство науки основаны на работе с идеальными объектами. Например, прямая линия — это не тетива натянутого лука и не луч света: ведь они имеют небольшую толщину, а линия толщины не имеет. То же относится к геометрической плоскости и поверхности воды в спокойном озере, или к числу 5 и пяти пальцам на руке. Идеальные объекты (будь то числа или фигуры) встречаются только в математическом рассуждении.

Все природные тела и процессы суть искаженные подобия идеальных тел и движений, а закономерности идеальных объектов выражаются с помощью чисел. Короче говоря: числа правят миром через свойства геометрических фигур! Но если так, то любые свойства чисел приобретают особое (даже мистическое) значение. Есть числа четные, а есть нечетные; есть простые, и есть составные. И еще есть дроби, то есть отношения натуральных чисел; их Пифагор из осторожности называл не числами, а «величинами».

Так в школе Пифагора из арифметики была выделена в отдельную область теория чисел, то есть совокупность математических знаний, относящихся к общим свойствам операций с натуральными числами. В это время уже стали известными способы суммирования простейших арифметических прогрессий. Были рассмотрены вопросы делимости чисел, введены арифметическая, геометрическая и гармоническая пропорции.

Наряду с геометрическим доказательством теоремы Пифагора был найден способ отыскания неограниченного ряда троек «пифагоровых» чисел, то есть троек чисел, удовлетворяющих соотношению a^2 + b^2 = c^2 и имеющих вид: п, (n^2 — 1)/2, (n^2 + 1)/2, где п — нечетное. Было открыто много математических закономерностей теории музыки.

Едва ли не первой открытой иррациональностью явился 2^1/2. Можно предполагать, что исходным пунктом этого открытия были попытки найти общую меру с помощью алгоритма последовательного вычитания, известного под именем алгоритма Евклида. Возможно, что некоторую побудительную роль сыграла задача математической теории музыки: деление октавы, приводящей к решению пропорции 1: п = п: 2. Не последнюю роль, по-видимому, играл и характерный для пифагорейской школы общий интерес к проблемам теории чисел.

Вслед за иррациональностью 2^1/2 были открыты многие другие иррациональности. Так, Архит доказал иррациональность чисел вида [n(n+1)]^1/2. Теодор из Кирены установил иррациональность квадратного корня из чисел 3, 5, 6…, 17.

Появление иррациональностей означало для неокрепшей греческой математики одновременное появление серьезных трудностей как в теоретико-числовом, так и в геометрическом плане. Была фактически поставлена под удар вся теория метрической геометрии и теория подобия. Но коль скоро открытие иррациональности показало, что совокупность геометрических величин (например, отрезков) более полна, чем множество рациональных чисел, то представилось целесообразным это более общее исчисление строить в геометрической форме. Это исчисление было создано; в литературе оно получило название геометрической алгебры.

Первичными элементами геометрической алгебры являлись отрезки прямой: работой с ними были определены все операции исчисления. Сложение интерпретировалось приставлением отрезков, вычитание — отбрасыванием от отрезка части, равной вычитаемому отрезку. Умножение отрезков приводило к построению двумерного образа; произведением отрезков а и b считался прямоугольник со сторонами а и b. Произведение трех отрезков давало параллелепипед, а произведение большего числа сомножителей в геометрической алгебре не могло быть рассматриваемо. Деление оказывалось возможным лишь при условии, что размерность делимого больше размерности делителя. Оно интерпретировалось эквивалентной задачей приложения площадей. Метод приложения площадей был распространен и на случаи решения задач, сводящихся к квадратным уравнениям.

Однако довольно быстро выявилась ограниченность области применения методов геометрической алгебры. Средствами построения являлись только циркуль и линейка, и хотя можно представить себе операции с трехмерными образами, но даже такая простая, казалось бы, задача, как построение куба с объемом вдвое больше данного, не поддавалась решению с помощью циркуля и линейки. Задачи же, приводящиеся к уравнениям степени выше третьей, оказывались в геометрической алгебре просто невозможными.

Среди других задач, не имевших решения этими методами, наиболее известны проблемы трисекции угла и квадратуры круга.

История задачи об удвоении куба — пример того, как происходит обогащение математических методов. Из-за этой задачи конические сечения вошли в математику, став средством решения задач, не поддающихся циркулю и линейке. Впрочем, для решения задачи удвоения куба применялись и другие способы. Эратосфен, например, построил прибор (мезолабий), удобный для приближенного удвоения куба. Однако ни один из методов не имел столь большого влияния на развитие античной математики, как конические сечения.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*