KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » История » Дмитрий Калюжный - Другая история науки. От Аристотеля до Ньютона

Дмитрий Калюжный - Другая история науки. От Аристотеля до Ньютона

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Дмитрий Калюжный, "Другая история науки. От Аристотеля до Ньютона" бесплатно, без регистрации.
Перейти на страницу:

Предчувствуя эту связь, Омар Хайям поставил много интересных вычислительных опытов. Он нашел приближенные способы деления окружности на 7 или 9 равных частей; составил подробные таблицы синусов и с большой точностью вычислил число «пи». Он догадался, что это число иррациональное, и даже не квадратичное – но доказать не смог. Не удались Хайяму и попытки доказать пятый постулат Евклида о параллельных прямых.

Влияние алгоритмически-вычислительной направленности арабской математики отразилось и на ее структуре. В ней сравнительно быстро, впервые в истории, выделилась в качестве самостоятельной математической науки алгебра. В этом факте нашло свое выражение слияние элементов алгебраического характера математики различных народов, например: геометрическая алгебра византийцев, группировка однотипных задач и попытка выработать для каждой группы единый алгоритм в Вавилоне, вычислительные задачи индийцев, приводившие к уравнениям 1-й и 2-й степени, и т. п.

В трудах математиков средневекового Востока эти алгебраические элементы были впервые выделены, собраны в новый специальный отдел математики, сформулирован предмет этого нового отдела науки и построена систематическая теория. В качестве примера такого подхода приведем высказывание Омара Хайяма:

«Алгебра есть научное искусство. Ее предмет – это абсолютное число и измеримые величины, являющиеся неизвестными, но отнесенные к какой-либо известной вещи так, что их можно определить; эта известная вещь есть количество или индивидуально определенное отношение, и к этой известной вещи приходят, анализируя условия задачи; в этом искусстве ищут соотношения, связывающие данные в задачах величины с неизвестной, которая вышеуказанным образом составляет предмет алгебры. Совершенство этого искусства состоит в знании математических методов, с помощью которых можно осуществить упомянутое определение как числовых, так и геометрических неизвестных… Алгебраические решения… производятся лишь с помощью уравнения, то есть приравниванием одних из этих степеней другим».

Европейские ученые начали знакомиться с алгеброй в начале XII века, а источником их сведений явилось сочинение «Китаб аль-Джебр валь-Мукабала» Мухаммеда бен-Муса ал-Хорезми, жившего в первой половине IX века. Название в переводе означает: книга об операциях джебр (или гебр, восстановление) и кабала (приведение). Первая из операций, имя которой послужило названием для алгебры и служит до сего времени, состоит в переносе членов уравнения из одной стороны в другую. Вторая есть операция приведения подобных членов уравнения. Решение уравнений рассматривается как самостоятельная наука.

Книга Хорезми пользовалась большой известностью. Термин алгебра укоренился в математике. Осталось в этой науке и имя автора (аль-Хорезми) в латинизированном виде: алгоритм. Вначале это слово обозначало фамилию, затем нумерацию по позиционной системе, а теперь – всякую систему вычислений, производимых по строго определенным правилам и заведомо приводящих к решению поставленной задачи. В ходе развития науки изменялось содержание понятий, вложенных в эти термины, но термины сохранились.

Но сам Хорезми никогда не высказывался о своем приоритете в алгебре. Видимо, оба приема – джебр и кабала – были уже широко распространены в его время.

Алгебраические арабские трактаты IX–XV веков, помимо решения уравнений 1-й и 2-й степени, включали в себя и кубические уравнения. К последним приводили разнообразные задачи:

а) рассечение шара плоскостью; б) трисекция угла; в) отыскание стороны правильного 9-угольника; г) отыскание стороны правильного 7-угольника и другие.

Одна из задач оптики: найти на данной окружности такую точку, чтобы луч, падающий из данной точки A, отразился в другую заданную точку В, приводила к уравнению 4-й степени.

В методах решения кубических уравнений отразилось многообразие средств, обычно присущее математике арабских ученых. Численные же решения уравнений развивались, начиная со способа проб (разработан Бируни, 972-1048) до изящного итерационного, быстро сходящегося, метода (Каши, ок. 1420).

Помимо выделения алгебры, важнейшей характерной чертой арабской математики было формирование тригонометрии. И в этой области происходил синтез разнообразных тригонометрических элементов: исчисление хорд и соответственные таблицы предшествующих ученых, в особенности результаты Птолемея и Менелая, операции с линиями синуса и косинуса у индийцев, накопленный опыт астрономических измерений.

Используя этот разнородный материал, математики стран Ближнего Востока и Средней Азии ввели все основные тригонометрические линии. В связи с задачами астрономии они составили таблицы тригонометрических функций с большой частотой и высокой точностью. Данных накопилось при этом так много, что стало возможным изучать свойства плоских и сферических треугольников, способы их решений. Получилась стройная система тригонометрии как плоской, так и сферической. Ее представляет, например, сочинение Насирэддина (1201–1274) «Трактат о полном четырехстороннике».

Арабское доказательство теоремы Пифагора

Тригонометрия в математике средневекового Востока приобрела положение отдельной математической науки. Из совокупности вспомогательных средств астрономии она преобразовалась в науку о тригонометрических функциях в плоских и сферических треугольниках и о способах решения этих треугольников. Алгоритмически-вычислительные средства стали играть в ней преобладающую роль. Оставался один только шаг: введение специфической символики, чтобы тригонометрия приобрела привычный нам аналитический облик. Однако для этого шага понадобилось много времени! Дальнейшее развитие эта наука получила со второй половины XVI века в Европе, в первую очередь под влиянием запросов мореплавания и астрономии. В конце этого века появилось и название науки – «тригонометрия», от греческого измерение треугольников.

В ряду геометрических сочинений обращают на себя внимание глубокие исследования по основаниям геометрии. В сочинениях Хайяма и Насирэддина мы находим попытки доказательства постулата о параллельных, основанные на введении эквивалентных этому постулату допущений. Имена этих математиков с полным правом могут быть помещены историками в длинном ряду предшественников неевклидовой геометрии.

Примерно в середине XV века развитие математических наук в описываемых нами здесь арабских регионах замедляется и прекращается. Причины этого явления лежат вне математики: они – в наступившем экономическом разобщении обширных территорий, о которых шла речь выше.

Математика европейского Средневековья

В Западной Европе математика не имеет столь древнего происхождения, как в странах Ближнего и Дальнего Востока. Заметные успехи появились тут лишь в эпоху позднего Средневековья и особенно Возрождения. А основной организационной предпосылкой развития математики в Европе стало открытие учебных заведений. Одно из первых организовал во французском городе Реймсе Герберт (940-1003), позже ставший римским папой с именем Сильвестр II.

Французский монах Герберт из Орильяка – первый профессиональный ученый католической Европы. В 970-е годы он поселился в Барселоне, выучил арабский язык и начал беседовать с учеными иноверцами обо всем на свете. Астрономия и арифметика, изготовление бумаги и музыкальных инструментов – во всем этом жители Андалузии превосходили лучших мастеров Франции или Италии, и все это Герберт старался перенять. Через пять лет он сделал очередной шаг: направился в центр Андалузии – Кордову и три года учился у местных мудрецов. Ему не раз предлагали принять ислам. Но у него была другая цель: соединить арабскую мудрость, ученость древних греков и римлян с христианским богословием; сделать этот сплав достоянием всех католиков.

Вернувшись во Францию, Герберт устроил в городе Реймсе училище по своему вкусу. В нем юноши обучались латыни и греческому, а желающие – также арабскому и древнееврейскому языкам. Кроме этого, преподавались астрономия и музыка, арифметика на основе арабских цифр. Все необходимые приборы строил сам Герберт с помощью учеников. Герберт привез с собой много книг из-за Пиренеев; это были Платон и Аристотель, Евклид и Птолемей, множество арабских рукописей.

В реймсской школе Герберта, кроме прочих наук, учили счету с применением счетной доски – абака, которую усовершенствовали путем замены пустых жетонов, каждый из которых имел значение единицы, на жетоны с написанными на них цифрами.

В то время существовало много способов счета. Были даже две враждующие партии: абакистов и алгоритмиков. Первые отличались требованием обязательного использования абака и двенадцатиричной римской нумерации. Алгоритмики пользовались индусскими цифрами, некоторые вводили знак нуля, счет вели на бумаге, применяли шестидесятиричные дроби. В спорах формировались системы счисления и приемы арифметического счета, все более близкие к привычным нам системам и приемам.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*