KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » История » Дмитрий Калюжный - Другая история науки. От Аристотеля до Ньютона

Дмитрий Калюжный - Другая история науки. От Аристотеля до Ньютона

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Дмитрий Калюжный, "Другая история науки. От Аристотеля до Ньютона" бесплатно, без регистрации.
Перейти на страницу:

Книга шестая, «Пропорциональное распределение», начинается группой задач о справедливом (пропорциональном) распределении налогов. Математические методы здесь те же, что в книге третьей, где речь шла о распределении доходов между чиновниками различных классов, – пропорциональное деление, простое и сложное тройное правило. Кроме того, в шестую книгу входит серия задач на суммирование отдельных арифметических прогрессий и задач на совместную работу лиц с разной производительностью.

«Избыток-недостаток» – так называется седьмая книга. В ней подобраны задачи, приводящиеся к линейным уравнениям и их системам, и разработан способ их решения, совпадающий с методом двух ложных положений. Задачи и в этом случае накапливались в возрастающей степени трудности. Метод тоже еще не сформулирован четко и имеет много разновидностей частного характера.

Усовершенствование складывающихся в седьмой книге правил решения систем линейных уравнений и распространение их на системы с большим числом неизвестных изложены в правиле фан-чэн, которому посвящена вся восьмая книга. Задачи этой книги приводят к системам до пяти совместных уравнений линейных с положительными корнями. Для всех систем установлен единый алгоритм вычисления корней – упомянутый фан-чэн.

Дело в том, что в процессе преобразований матрицы системы китайские ученые ввели отрицательные числа. Для их сложения и вычитания и было введено специальное правило, которое можно перевести как правило «плюс-минус». Так как все вычисления, в том числе и преобразования матрицы, производились на счетной доске, то для обозначения отрицательных чисел применялись счетные палочки другого цвета или формы, а в случае записи применялись иероглифы разных цветов.

Расширение понятия числа в связи с нуждами обобщения созданного алгоритма является характерной особенностью развития математики. Те же стремления обеспечить общность решения в радикалах уравнений 2–4 степени привели в Италии к введению в XVI веке мнимых чисел. Что же касается приоритета китайских математиков относительно правила фан-чэн, то он был бы бесспорен, если бы мы не знали, что отрицательные числа в явном виде появились в Европе в конце XV века в сочинениях Н. Шюке и что очень много европейских новинок было привезено в Китай иезуитами в XVI веке.

Практическую основу последней книги «Математики в девяти книгах» составляют задачи определения недоступных расстояний и высот с помощью теоремы Пифагора и свойств подобных треугольников. Математически эта книга особенно интересна общей, алгебраической формулировкой правил. Помимо элементарных способов применения теоремы Пифагора, в ней имеется способ нахождения пифагорейских троек, то есть целочисленных решений уравнения x 2+y 2=z 2. Некоторые задачи приводят к полным квадратным уравнениям, а правила их решения эквивалентны общеупотребительным и ныне формулам.

Например, задача № 11 о размерах двери, относительно которой известны диагональ и разность между длиной и шириной, сводится к двум уравнениям. Выводов и доказательств, как уже было упомянуто, в рассматриваемом трактате нет.

Мы остановились так подробно на обзоре содержания «Математики в девяти книгах» потому, что это сочинение является самым значительным и даже, пожалуй, единственным крупным памятником древней китайской математики. И зная любовь китайцев к своим приоритетам и стремление все свое объявлять древним, полагаем, что он был создан позже прихода европейцев в Китай.

Сами же историки говорят, что с XIV века в Китае начинается длительный период застоя в развитии наук. Добытые ранее знания не развиваются и даже забываются. Математика существует преимущественно за счет усвоения иностранных знаний. И лишь потом науками вновь занялись, и сразу вспомнили свои древние открытия. Как же это произошло?

В 1583 году в Китай пришел иезуит-миссионер М. Риччи, а затем сюда потянулись и другие. Видимо, не без их содействия в 1606 году в Китае впервые появились издания «Начал» Евклида, в 1650 году – таблицы логарифмов Влакка. Оригинальное же развитие китайской науки все еще было «прекратившимся». Спрашивается, а было ли оно раньше? Математики-специалисты китайского происхождения всегда готовились к научной деятельности за границей, да в большинстве случаев оттуда в Китай и не возвращались.

О математике Индии

В средневековой математике Индии преобладали вычислительно-алгоритмические методы и отсутствовали попытки построения дедуктивных систем. Геометрия индийцев – также практическая. И это неудивительно, так как в основном все сюда приносилось из других мест, в том числе и наука – сначала вместе с религиозными эмигрантами из Византии, а потом с деятелями мусульманской экспансии. Соединение здесь различных потоков знания дало свои результаты, и весьма неплохие.

Индийские математики ввели понятие нуля и широко использовали отрицательные числа, проводили исследования по комбинаторике (Ариабхатта, якобы V век). Они создали десятичную систему записи натуральных чисел и разработали правила операций над записанными так числами. Эту запись чисел стали применять математики многих восточных стран, откуда она попала в Европу. Индусы начали оперировать с иррациональными количествами так же, как с рациональными, без геометрического их представления, в отличие от византийских греков. У них были специальные обозначения для алгебраических действий, включая извлечение корня. Именно благодаря тому, что индусские и среднеазиатские ученые не смутились различием иррациональных и рациональных количеств, они смогли преодолеть «засилье» геометрии и открыли путь развитию алгебры.

Но и в Индии есть мифический период в развитии математики. Согласно традиции, самыми ранними памятниками математической культуры индийцев являются религиозные книги: сутры и веды. Их происхождение относят к VIII–VII векам до н. э. В них приводились геометрические построения, составляющие важную часть ритуальных условий при постройке культовых сооружений: храмов, алтарей и прочего, а потому в них можно найти первые способы квадрирования кругов и применение теоремы Пифагора. Видимо, как следствие архитектурных требований решалась и арифметическая задача о нахождении пифагоровых троек натуральных чисел.

Числовая система с древних времен определилась как десятичная. Столь же рано сложилась склонность к оперированию большими числами, нашедшая отражение в легендах. Будда, например, отличался феноменальным умением считать; он строил числовые десятичные системы до 1054, давая наименования каждому разряду. Женихи прекрасной богини Земли, добиваясь ее руки, обязаны были соревноваться в письме, арифметике, борьбе и стрельбе из лука. Победитель соревнования Сарватасидда придумал, в частности, шкалу чисел, идущих в геометрической прогрессии со знаменателем 100, до числа с 421 нулем. Пристрастие к операциям с большими числами сохранялось в течение всей истории математики в Индии. Но мы не знаем, к какому реально периоду времени эти труды относятся.

Появление позиционного принципа в индийской математике относят к V веку.[23] Отныне числовое значение каждой цифры определялось ее местом влево от конца цифрового ряда. Передвижение цифры на одно место увеличивало ее числовое значение в 10 раз. В соответствии с десятичным принципом индийцы разработали знаки для 9 цифр и десятый знак, нуль. Знак нуля (шунья – пустой) сначала обозначался точкой, потом кружком. И кстати, по некоторым другим сведениям, первые записи с нулем датируются 876 годом.

Арабы (раньше всего в Багдадском халифате) узнали о математических открытиях индийцев в VIII веке благодаря торговым и дипломатическим сношениям. Подхваченная арабами цифровая система пришла в Западную Европу под названием арабской к XII веку, по-видимому, через арабские владения в Испании. Слово сифр, впоследствии принятое в европейских странах для обозначения цифр вообще, исходно значило по-арабски нуль. В английском языке до сих пор слово cipher означает нуль, цифру, шифр.

Наиболее яркий период развития, оставивший самые значительные образцы математической литературы это V–XII века. В это время трудились выдающиеся индийские ученые, математики и астрономы: Ариабхатта (считается, что он жил в конце V века), Брахмагупта (считается, что он родился в 598 году), Магавира (IX век), Бхаскара Акарья (родился в 1114 году) и другие.

Ариабхатта дал наиболее точное в то время определение числа «пи» – 3,1416, вычислил значение корней 2-й и 3-й степени. Для понятия корень он использовал перевод греческого слова basis, обозначавшего одновременно основание и корень. В XII веке это понятие было переведено на латынь словом radix (корень), из которого во многие языки вошли понятия корень и радикал.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*