KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » История » Дмитрий Калюжный - Другая история науки. От Аристотеля до Ньютона

Дмитрий Калюжный - Другая история науки. От Аристотеля до Ньютона

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Дмитрий Калюжный, "Другая история науки. От Аристотеля до Ньютона" бесплатно, без регистрации.
Перейти на страницу:

Эта система очень напоминает римскую, ведь и числа римского счета I, V, X, L, С, D, М одновременно были буквами, и к ним тоже добавляются «палочки». Причем римская система применялась в Европе до перехода на так называемые арабские, а на самом деле индийские цифры, имевшие почти современный вид; Византия перешла на них в XII веке, на 200 лет раньше Западной Европы. Можно предположить, что аттическая нумерация была навязана грекам Византии латинянами, после захвата ими Царьграда и Греции в ходе 4-го Крестового похода 1204 года.

После аттической нумерации греки якобы выбрали другую, ионийскую систему – полагают историки. В ней числа от 1 до 9 обозначаются первыми девятью буквами алфавита. Числа 10, 20, 30,…, 90 – следующими девятью буквами. Числа 100, 200,…, 900 – последними девятью буквами. А мы напомним, что эту систему в IX веке позаимствовали из Византии славяне, так что в Византии она могла быть не позже, а раньше аттической.

Преимущество алфавитных систем в краткости записи, однако они мало пригодны для оперирования с большими числами и требуют значительных усилий для запоминания.

Со временем сформировались позиционные недесятичные, а затем десятичная системы. К позиционным недесятичным системам относится вавилонская, к позиционной десятичной – индийская. О них мы поговорим чуть позже.

Славянские цифры

Люди в разных местах и в разное время постепенно накапливали эмпирические знания, развивая ремесло, земледелие, обмен и торговлю. Эти знания подвергались систематизации; так выделился особый вид понятий и методов решения задач. Пересчет элементов конечных множеств, а также упорядочивание этих элементов привели к понятию натурального числа, как количественного, так и порядкового. Сравнение масс предметов, объемов сосудов, расстояний дали понятие величины. Изучение формы изделий, зданий, земельных участков вывело к понятию геометрической фигуры, как части геометрического пространства (само слово геометрия в переводе с греческого означает «землемерие»).

Так же из повседневной практической деятельности сформировались и другие математические понятия: площади, объема и прочих абстракций пространственных свойств предметов.

Ведь создание математической науки есть прежде всего переход к абстракциям. Вместо счета стрел, голов скота и т. д. родилось абстрактное понятие числа. Стало возможным предварять непосредственное оперирование с вещами оперированием с их упрощенными, схематическими изображениями и наименованиями (символами).

Наконец, наступил период, когда это знание стало востребованным в заметных масштабах, в обществе образовалась прослойка людей, умеющих пользоваться совокупностью математических приемов. С этого момента, можно сказать, начала существовать математика как наука.

Прежде всего началась арифметика. Предмет ее составляют не числа, а система чисел с ее связями и законами, да и сама арифметика может быть определена как наука об отношениях между числами. Само же слово арифметика происходит от греческого «искусство счета» (арифмос – число и техне – искусство). Что касается слова математика, то от греческого mathema – значение, наука, знание. С толкованием определения математики и сегодня не все достаточно ясно. Довольно сильной является традиция ее трактовки не столько как науки, сколько как языка науки.

О математике Древнего Египта

Все наши познания о древнеегипетской математике основаны главным образом на двух больших папирусах математического характера и на нескольких небольших отрывках.

Один из больших папирусов носит название математического папируса Ринда (по имени обнаружившего его ученого) и находится в Лондоне. Он имеет приблизительно 5,5 метра в длину и 32 сантиметра в ширину. Другой большой папирус, почти такой же длины и 8 сантиметров в ширину, находится в Москве. Содержащиеся в них математические сведения относят примерно к 2000 году до н. э.

Папирус Ринда содержит 84 задачи прикладного характера. При решении этих задач производятся действия с дробями, вычисляются площади прямоугольника, треугольника, трапеции и круга, объемы параллелепипеда, цилиндра, размеры пирамид. Имеются также задачи на пропорциональное деление, а при решении одной задачи находится сумма геометрической прогрессии.

В Московском папирусе собраны решения 25 задач. Большинство их такого же типа, как и в папирусе Ринда. Кроме того, в одной из задач правильно вычисляется объем усеченной пирамиды с квадратным основанием, а в другой содержится самый ранний в математике пример определения площади кривой поверхности: вычисляется боковая поверхность корзины, то есть полуцилиндра, высота которого равна диаметру основания.

При изучении этих папирусов обнаруживается, что у древних египтян сложилась определенная система счисления: десятичная иероглифическая. Для узловых чисел вида 10к (к = 0, 1, 2,…, 7) установлены индивидуальные иероглифы. Алгоритмические числа записывались комбинациями узловых чисел. С помощью этой системы египтяне справлялись со всеми вычислениями, в которых употребляются целые числа. Что касается дробей, то египтяне понимали дроби только как доли единицы: употреблялись лишь дроби аликвотные (вида 1/n) и некоторые индивидуальные, как, например, 2/3, 3/4. Все результаты, которые должны были выражаться дробями вида т/n, выражались суммой дробей. Для облегчения этих операций были составлены специальные таблицы, например таблица чисел вида 2/n (n = 3,…, 101).

Сложились также определенные приемы производства математических операций с целыми числами и дробями. При умножении, например, преимущественно используется способ постепенного удвоения одного из сомножителей и складывания подходящих частных произведений (отмечены звездочкой) (12 × 12)

1 – 12

2 – 24

*4 – 48

*8 – 96

Вместе – 144

При делении также используется процедура удвоения и последовательного деления пополам. Деление, по-видимому, было самой трудной математической операцией для египтян; в нем наблюдается самое большое разнообразие приемов.

Цифры Египта, Вавилона, Сирии и Аттики

Приведем пример одной из задач.

«Сало. Годовой сбор 10 беша. Какой ежедневный сбор? Обрати 10 беша в ро. Это будет 3200. Обрати год в дни. Это будет 365. Раздели 3200 на 365. Это 8 2/3 1/10 1/2190. Обрати».

Производится постепенный подбор частного. 8 дает разницу между истинным и частичным делимым: 3200–2920 = 280. Сомножитель 2/3 дает: 365 × 2/3 = 243 1/3. Еще до 280 не хватает 36 2/3. Очередной подбор 1/10 дает уже разницу в 1/6 (так как 36 2/3-36 1/2 = 1/6). Остается только подобрать число, которое, будучи умножено на 365, дало бы 1/6. Это 1/2190. Таким образом, частное отыскивается постепенным подбором, для которого еще нет единого метода.

Часто встречается операция, называемая «хау» («куча»), соответствующая решению линейного уравнения вида ах + bх +… сх = d.

Материалы, содержащиеся в папирусах, позволяют утверждать, что в Египте начали складываться элементы математики как науки. Техника вычислений еще примитивна, методы решения задач неединообразны.

Византийская математика

Основным достижением математической мысли, характеризующим начало византийской математики, было возникновение и развитие понятия о доказательстве. Первым из философов, применившим в математике метод доказательства, считается греческий ученый Фалес из Милета. Фалес доказал, например, равенство вертикальных углов, равенство углов при основании равнобедренного треугольника, один из признаков равенства треугольников и т. д.

Новым было то, что Фалес впервые попытался логически свои выводы обосновать. Тем самым он положил начало дедуктивной математики – той, которая впоследствии была превращена в стройную и строгую систему знаний.

Затем метод доказательства был усовершенствован и развит учеными пифагорейской школы, которые доказали, в частности, утверждение, называемое теперь теоремой Пифагора. Пифагорейцы предприняли первую попытку свести геометрию и алгебру того времени к арифметике. Они считали, что «все есть число», понимая под словом «число» лишь натуральные числа.

Однако натуральных чисел и дробей оказалось недостаточно для того, чтобы выразить длину диагонали квадрата со стороной 1. Анализ полученного доказательства привел к исследованию начальных вопросов теории чисел (четности и нечетности натуральных чисел, разложения чисел на простые множители, свойств взаимно простых чисел и т. д.). Византийские математики эллинского периода предприняли попытку обосновать всю математику на основе геометрических понятий. Они истолковывали, например, сложение величин как сложение отрезков, а умножение – как построение прямоугольника с заданными сторонами.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*