Иван Рожанский - История естествознания в эпоху эллинизма и Римской империи
Эпициклы и эксцентры
По этим причинам дальнейшее развитие греческой астрономии пошло не по линии перехода к гелиоцентризму (хотя этот переход и наметился было в эпоху Гераклида Понтийского и Аристарха), а по линии усовершенствования геоцентрических систем таким образом, чтобы при сохранении геоцентрического принципа из них можно было бы устранить бросавшиеся в глаза дефекты модели гомоцентрических сфер. Но для этого требовалось обогатить геоцентрическую картину мира новыми идеями. Вскоре такие идеи были найдены: это были идеи эксцентра и эпициклов. Разработка этих идей и их применение к объяснению видимых движений небесных тел обычно связывается с именами трех великих ученых древности — Аполлония Пергского, Гиппарха и Птолемея. Правда, согласно Симпликию[232] неопифагореец Никомах и неоплатоник Ямвлих приписывали открытие этих идей пифагорейцам эпохи Аристотеля, но эти сообщения следует отнести к числу других позднейших легенд подобного рода. Нет никаких оснований предполагать, что эти идеи возникли ранее III в. до н. э.
У нас нет сведений о сочинениях Аполлония на астрономические темы. Мы даже не знаем, писал ли он вообще такие сочинения. Однако Птолемей в «Альмагесте» дважды упоминает его имя в связи с теориями эпициклов и экс-центров[233], и на основании этих упоминаний мы можем со значительной долей вероятности представить себе, что именно было сделано Аполлонием (хотя, возможно, и но им одним) в области теоретической астрономии.
Греческие астрономы различали два рода нерегулярностей, или «аномалий» (άνομαλία), в движении небесных светил. Первая аномалия состояла в том, что светило, двигаясь в одном и том же направлении вдоль эклиптики, совершало это движение с неодинаковой скоростью. Такого рода аномалия была присуща движению Солнца и Луны; именно ею объясняется неодинаковая длительность времен года — факт, который не мог найти объяснения ни в модели гомоцентрических сфер Эвдокса, ни в гелиоцентрической модели Аристарха. Вторая аномалия присуща движению пяти планет: она характеризуется чередованием прямых и попятных движений, о чем мы также говорили выше.
Заслуга Аполлония Пергского состояла, по-видимому, в том, что он показал принципиальную возможность моделирования как первой, так и второй аномалии с помощью двух теорий — теории эпициклов и теории эксцентров. Так, например, Птолемей приводит геометрическое построение Аполлония, которое показывает, каким образом планета, движущаяся по малому кругу (эпициклу) вокруг центра, который, в свою очередь, движется по большому кругу (деференту) вокруг Земли, кажется стоящей на месте или совершающей попятное движение. Далее. Птолемей (уже без ссылки на Аполлония) доказывает возможность получения той же картины с помощью теории движущегося эксцентра. Чисто геометрическая разработка этих вопросов была, видимо, проведена уже в эпоху Аполлония, хотя ни Аполлоний, ни кто другой из его современников не пытались применить полученные результаты к движениям реальных небесных светил. Последнее было сделано величайшим астрономом эпохи эллинизма. — Гиппархом,
Гиппарх
О жизни Гиппарха мы знаем очень мало — за исключением того, что он был родом из Никои (в Вифинии, на северо-западе Малой Азии) и что его деятельность относилась примерно к середине II в. до н. э. (между 160 и 120 гг.). Он проводил астрономические наблюдения в разных местах, в том числе и в Александрии, но его основным местопребыванием был остров Родос. От многочисленных сочинений Гиппарха до нас дошли лишь «Комментарии к Арату»[234], но, к счастью, об его астрономических достижениях достаточно подробные сведения сообщает Птолемей в «Альмагесте».
Прежде всего, Гиппарх детально разработал теорию движения Солнца. При этом он исходил из следующей теоремы, автором которой также считается Аполлоний. Если период движения небесного тела по эпициклу равен периоду движения центра эпицикла, движущегося вокруг Земли в противоположном направлении, то в этом случае результирующее движение тела будет происходить по круговой орбите, центр которой уже не совпадает с центром Земли, а отстоит от него на расстоянии, равном радиусу эпицикла (рис. 3). Это, собственно, и есть теорема об эквивалентности гипотезы эпициклов и гипотезы экс-центра для первой аномалии. Гиппарх предположил, что Солнце движется именно по такого рода эксцентру и что этим следует объяснить неодинаковость времен года. Задача построения теории движения Солнца состояла в том, чтобы уточнить характер этой эксцентрической орбиты, т. е. выяснить направление максимального и минимального удаления Солнца от Земли (апогея и перигея) и определить величину эксцентриситета, т. е. величину смещения центра солнечной орбиты по отношению к центру Земли,
Здесь необходимо небольшое отступление. Греческие астрономы имели дело лишь с видимыми движениями небесных светил, иначе говоря — с проекциями их истинных движений на небесную сферу. Размеры самой небесной сферы приэтом оставались неизвестными: она могла быть бесконечно большой или совпадать со сферой неподвижных звезд или иметь какой-либо иной радиус: для теории этот вопрос оставался несущественным, поскольку абсолютные расстояния между светилами ни в каком виде не входили в теорию, ставившую перед собой за дачу «спасения явлений» (σώζειντα φαινόμενα). В этой теории речь могла идти лишь об изменениях во времени угловых величин, характеризующих положения светил на небесной сфере, т. е. их долгот и широт, но отнюдь не о линейных расстояниях между ними. Разумеется, античные ученые, начиная с Аристарха, интересовались и фактическим удалением от Земли прежде всего таких светил, как Луна и Солнце, но вопрос этот рассматривался самостоятельно и не относился к теории движения этих светил и прочих планет. Сказанное относится и к определению величины эксцентриситета. Гиппарх мог определить не абсолютное значение расстояния центра Земли от центра эксцентра, по которому движется Солнце, но лишь отношение этого расстояния к какому-либо из линейных элементов солнечной орбиты, например к ее радиусу. Для объяснения «первой аномалии», т. е. для построения теории движения Солнца, этого было достаточно. При этом нужно было использовать данные наблюдений, относящиеся к «первой аномалии», т. е. к видимому движению Солнца по орбите. К этому времени таких данных накопилось уже достаточное количество.
Рис. 3. Эпициклы и эксцентр
Гиппарх выбрал три наблюдаемые величины, послужившие ему основой для проведения необходимых вычислений. Первой из них была общая длительность тропического года, т. е. промежуток времени между двумя последовательными положениями Солнца в точке весеннего равноденствия. Гиппарх определил, что «тропический год равен 365 дням и одной четверти и меньше приблизительно на 1/300 дня». Это значение сообщает нам Птолемей; в переводе на привычные нам единицы длительность тропического года, по Гиппарху, оказывается равной:
365 1/4 — 1/300 = 365,24667 дня = 365 дней 5 час. 55 мин. 12 сек.
Как указывают историки астрономии, это значение превышало истинное на 6 мин. 13 сек.: в эпоху Гиппарха длительность тропического года составляла 365 дней 5 час. 48 мин. 59 сек. Учитывая, однако, сравнительно примитивные средства наблюдений, которыми пользовались греческие астрономы, такую ошибку можно считать вполне извинительной. Установление моментов равноденствия представляло в то время немалые трудности, и даже Птолемей писал, что здесь могут встречаться ошибки «больше одной четверти дня»[235]. Длина тропического года, принятая Гиппархом, была средним статистическим значением, выведенным из множества наблюдений, производившихся как греческими, так и вавилонскими астрономами.
В качестве двух других величин, которые были ему нужны, Гиппарх принял промежуток времени между весенним равноденствием и летним солнцестоянием (астрономическая весна) и промежуток между летним солнцестоянием и осенним равноденствием (астрономическое лето). Эти промежутки, согласно его данным, были соответственно равны девяносто четырем с половиной и девяносто двум с половиной дням.
На этих трех величинах Гиппарх строит всю теорию Солнца. Долгота апогея Солнца (если долготу точки весеннего равноденствия принять за 0°) оказалась, согласно его теории, равной 65°30", а эксцентриситет (т. е. отношение расстояния между центрами Земли и Солнца к радиусу эксцентра Солнца) составил величину е=1/24=0,04166. Кроме того, теория Гиппарха давала возможность определить видимую долготу Солнца в любой момент времени. Отметим, кстати, что в теории Гиппарха Солнце движется точно по эклиптике, откуда следует, что он понимал ошибочность мнения Эвдокса о широтных колебаниях положения Солнца (о чем было сказано выше в связи с теорией гомоцентрических сфер). Между тем это ошибочное мнение оказалось очень живучим: в том или ином виде оно повторялось позднейшими компиляторами, например Плинием, Теоном и Марцианом Капеллой. В чем заключалась причина этой живучести? Может быть, в том, что с помощью такого предположения некоторые астрономы (еще до Гиппарха) пытались объяснить расхождение между длительностью тропического и сидерического года?